ETS| EG 202 106 V2.1.1 (2003-11)

ETSI Guide

Methods for Testing and Specification (MTS);
Guidelines for the use of formal SDL as a descriptive tool

D

2 ETSI EG 202 106 V2.1.1 (2003-11)

Reference
REG/MTS-00072

Keywords
ASN.1, methodology, MSC, SDL, testing, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, send your comment to:

editor@etsi.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2003.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
mailto:editor@etsi.org

3 ETSI EG 202 106 V2.1.1 (2003-11)

Contents

Intellectual Property RIGNES.........oo et 6
0 Yo (o SRS 6
1 o010 SRS 7
2 REFEIBINCES ...ttt sttt e et et et e e e bt e bt e bt s b e se e be st e st e st e benbenbeneenbentenees 7
3 Definitions and aDbrEVIBLIONS.........c.viieie ettt e e e tesreeeesneeneeseesneeneeseeenes 8
31 D= T aT] (0] PO P TP PR UPTPRUSUSII 8
3.2 ADDIEVIBLIONS ...ttt et b b h ekt e e e e se e e bt e bt eh e eh e et e e e bt e b e e Rt e Re e e e e e besheebenneeneennen 8
4 gLl [N o1 o] o SRRSO 9
5 Using specification languages in protocol Standards............coveeeereneennseeese e 10
51 g1 0o 1 1 o o PSS 10
52 LAY ErEU PrOLOCOIS.c.eeueeterteeeteetese ettt sttt b et b et b e bt e et eh e ee e e b b e s s eb e b e s e bt e bt e e bt b e b et bt e e e e bt e e e nns 10
5.3 Developing a protoCOl SPECITICALTIONcoveeiiieeiiire et 10
531 SPECITYING FEOUITEIMIENES ...t ceieeeee st stee st te st ettt et e te et e sre e te e te e teeeesseesseesaeeseenseeneenseesseesseenteensenneesnns 11
5.3.2 Developing alogiCal MOAE!c.ooeiiie et e st et reeteenneeneennes 11
533 Developing aphySiCal MOELcooiieiieice et et sr et e e b e e reeteeeesneesnes 11
6 NBMING CONVENTIONS. ...ttt sttt sttt sressesbestesseee e eseeseesesseabesbesbenbe e e e et eneeseabeneesbeneenseneens 13
6.1 LT 0T PSSR 13
6.1.1 CASE SENSITIVITY ...tttk b et b e e b e s e h e b e st e bt s R e e b e e et bt ee e e e e bt R et b e e b e e ene e b neenea 15
6.1.2 LeNGLN Of NAIMES ...ttt b e et b e et e b e et be et eb e s 15
6.1.3 LSS V<o AT oo PSR 15
6.2 ST T2 o 8 S 16
6.2.1 Use Of NON-SIgNIfiCaNt ChaIrACLErS.........ciieeieeie ettt et e reeteenesneesnes 16
6.2.2 MUILIPIE USE OF NAIMES.....c.ueeiee ittt s e st e e te e ae e e e saeesse e seenteestesseenteesseeseeseeneenneennns 16
6.2.3 Making NameS MEBNINGIUL...........ueiieieece e e e sae e st e e ae et e esaeereeste e se e seensesneesneesnes 17
6.2.3.1 Block, process and iNSIANCE NAIMIESoivieieere e cee e see st e e e eete e saesreesaeesseenseenteensesseesseesseessens 17
6.2.3.2 Procedure, operator and Method NAMEScc.eeieeiie ettt neees 17
6.2.3.3 SN NAIMIESccvteeie ettt et e st e st e saeesae e teeseeaseease e teenseesseaneesaeesaeesaeenseensenntenneesneenrnns 18
6.2.34 Signal list and INTEITAcE NAIMES..........oiiiiiiee et sn s 18
6.2.35 SDL SEBIE NMAIMES. ...ttt sttt ettt e s ae e s ae e beeateeaeeeaeesbeeabeeeeemeesaeesaeeaseenseenseensesneasseesaeas 18
6.2.3.6 Names of variableS and CONSLANESooiriieii et se e b e see e eneeneens 19
6.2.3.7 180 19
6.3 Dz = B 1Y 0= TP 19
7 Presentation and 1ay0out Of AIBgIaIMScceriiiriereeereee et 19
7.1 The general flow Of DENAVIOUr @CIOSS @ PAJE ieverie ettt ete et ee e s e e re et saeeneesraesreas 20
7.2 Behaviour covering More than ONE PAgE.........voeie ettt e et er e sraesae e teeteeneesneennns 21
721 ST LI o= 0= V7o T e =T =0 21
722 Definitions in Dehaviour diagrams............ooiiii e e 25
7.2.3 UML BCHVILY QIBONAIMS.eitiiiteiteiete ettt ettt b e et b e et b et b e bt b e s b se et b b et eb e n e 26
7.3 TEXE EXIENSION SYMIOIS......ctieict ettt et b e et b e bbb et bt se e e et e s b e e ebesbenneneas 27
7.4 Alignment and orientation Of SYMDOISoiiiiii bbb seene 27
74.1 F [T 01007 0| SO OEPTPEURP TSP U TSRV 27
742 (@ g1 017110 o O OSSOSO PP RRTP 29
75 Structuring BENaViOUr AESCIIPLIONS.........ciieiiece et s esre e sae e e eseesreesaeeneeensesseesnaesseesenn 29
751 BasiC StrUCIUNNG PIINCIPIESveiiecee ettt ettt te e s esaeesteenaeeaeeeseasseeste e seeseenseeneesneesnns 29
75.2 Structuring using Procedures and OPEraLIONS...........c.vicueeeereereeseeeee e see s e sreesae e e sreeste e e eteeeesneesnes 30
753 Emphasizing the difference between normal and exceptional behaviour flows...........cceceveeveeveeiecee, 30
8 Using procedures, Operations and MBCTOS.cccueiuieeerieieeiee e eieseseestesreessesseesaestesseessesseesessesssessessens 31
8.1 0100 L1 =SSR 31
811 Using procedures to replace informal taskS..........cccoi i 33
8.1.2 Procedure signature (parameters and returNed VAIUES)ccooirieiienirenienee e 34
8.1.3 00 o (U1 = oo o VS 36

ETSI

4 ETSI EG 202 106 V2.1.1 (2003-11)

8.14 F Yo Lo g To RS o L=, = ok SRR 39
8.1.5 INE= g o o 0010 (U] =S 40
8.2 (001 10 SRS 41
8.3 L ES o 0 RS 45
9 L0 LS g e o (=T = o LSS 46
9.1 D= ot 1= T o] 1 47
911 Naming of identifiers used With deCISIONS............ccoiiiiiiiii e 47
912 Using decisions to Structure & SPECITICALTON.........oiveiiiieirieriee e 47
9.13 Use Of tEXE StHNGS TN HECISIONS ...ttt ettt bbbt b et b et b e 47
9.14 Use of enumerated tyPeS iN GECISIONS.cccuiieiiee ettt e eese s s e sae e e e e et e te e be e beeteeneesnnennes 48
9141 USE Of ELSE.... oottt bbb Rt b st e bRt n b 49
9.15 Using SYNTYPES to limit the range of valueSin deCiSIONS..........ceovecuiieereese e 49
9.1.6 Use of symbolic NAameS in deCiSION OQULCOMES...........ccuerieerieerieeieseeseeseeseeesseesseesesseessensseessesssessesssssesnes 49
9.1.7 Use of range eXPpreSSiONS iN QECISIONSc.cueieiieereesiietee e etesteseeseesreesaeesseeseessessaessesstessseessesnsesnsssnsesnes 50
9.1.8 Use Of ProcedureSin DECISIONScuiueiiirreiirereeeere ettt n et nn e 51
9.1.9 USE Of ANY 1N AECISIONS....cueiieieiieiie ettt ettt ettt et be s et et e st e se e eeseesbesaeeseeneeseeseesaesseeneenseneens 53
9.2 Use of options rather than dECISIONS.............iieiiiiee bbb 53
9.3 FIOW CONEIOL SEBEEMENES. ... ettt ettt ee st s ee st e st e st e st e e eneeseeeseseesaeeneeeeseeseeseeeneeneenseneees 54
10 System structure, communication and 8AArESSING.........cccuerreririrerese e 56
10.1 S = IS Lok LU = PSPPSR 56
10.2 MiniMiSiNG the SDL MOUELcc.eoiieii e e s et e e e e e estesstesneesneesseesneenseensenns 57
10.3 Avoiding repetition DY USING SDL LYPES.....cciiieiie e seesieeste st e st e teete et e s et eestesaesseesreesseeseenseensesnaesseessens 58
10.3.1 Defining the same behaviour at both ends of aprotoCol............covee e 59
10.3.2 Static instances to represent repeated FUNCLIONELITYcceveeiieii e e 59
104 1= =0T RS 60
105 Diagrams SNOWiNg relatioNSiPS.........c.eriiiiiiieeree bbb bbb e 61
1051 Use of associations between class SYMDOIS ..o e 62
10511 Use of aclass symbol for an INTERFACE definitionccooiiireininieineseec s 63
10.6 Structure diagrams using interfaces DEWEEN BOENEScoo e e 63
10.7 Communi CatioN aNA AGAIESSINGc.eeuertereeieiterieie ettt st b ettt be e st b se e st et e st et et e st st sbeneeneees 64
10.7.1 Use of interface and SIGNALLIST defiNitioNS ..o 64
10.7.2 Indicating the use of SIgNalSiN INPULS 8N QULPULScceeeiieeiieeiiesie e see e se e eee e e ae e e s 65
10.7.3 Directing messages tO the Fght PrOCESS.........ccvicui it ae e ee e 65
10.7.4 DiffErentialing MESSAGES. ... ccveeiieeeeieecee st e st et ettt e et e st e s este e teeeesseesaeesaeesseeseanseessessaesteesseeseesennsenneennes 66
10.7.5 U o] = 01U 1 01U £ 66
10.7.6 Transitionstriggered by asat Of SIGNAIS........ooiiri e e 67
10.8 Gates and iMPLICIT ChBNNEIS. ..o bbb et eb e e 67
10.9 Other StrUCLUNTNG MECANTSIMS.cuiitiietiiteiete ettt b e et b e e bt b e bt bese et st e st eb e e 68
1091 ProCESSES WItNIN @ PIOCESS.ceeiecteieeiete ettt ettt et b et b e bbbt b e b et e b e et eb e n e 68
10.9.2 S o= o 01 - TP 68
10.9.3 Hiding and re-using PartS Of @SIAEEcoi et 68
10.94 LS o =0 o U= 70
10.95 (ot o 0] o (11 oo O P 70
11 Specification and USE Of Jala..........ceceeiiiiieiiiice s sttt e e st e s reeaeenrenre s 71
111 SPECITYING MESSAPES. .. veteneetesteeete st ete st ettt bt ebe st et b e sb et ebesee e ebe s e e st eb e e e e st ebe s e et ebesbene e b e s e e st ebesbe st ebesbe e nbenbenees 71
1111 SIPUCEUINTNG IMESSAOESveveueeterteseeterteeete st e et st e et b e e ebesb e e ebesa e e eb e sb e e ebesh e e et e sa et ebesb e e ebesbe e ebesbeneenesbennenea 72
11.1.2 Ordering MESSAgE PAIAIMELENS.eiuiueeterieeet ettt ettt r bbbttt eebe s b b e b e bt se e st eb e st ese s bt seesesbe e e s e nbe s enenns 73
11.1.3 Transposing Other MESSAGE FOMMIALS.eoveuiitirieiriier et bbbt 74
11.2 Specifying datathat isinternal to the SDL MOGEccooiiiiiiiireee e 74
1121 USE Of SYMIBOTIC NAIMESottt b et b e bt e b e et b e et et n e e 74
11211 Using data TYPE @nd SYNTY PE ... 75
112111 USING OBJIECT TYPE.....coiiiiitiirieiiesiet ettt ettt st b ettt e en s 76
12 Using Message Sequence Charts (MSC).....coi ittt ste et s sae s te e sresre e besrenre s 76
121 g1 0o (1 1o o SR 76
122 Relationship betWeen MSC aN0 SDLc.coiiiiiiriiieirieeees et ettt sb e e 76
12.3 Presentation NG TQYOULccciiriiiee bbbttt b et b bbb 77
1231 N 3170 = (0] LTSRS 77
124 NBIMING NGO SCOPE ...ttt ettt ettt ettt b bt h b eae s e e b e s b e e e s e e b e s e s e e b e b e ne e bt b e e ebe e b e e e st ebe s eneebe e et e 78
125 IS O o[0T [0| SRS 78

ETSI

5 ETSI EG 202 106 V2.1.1 (2003-11)

12.6 S Tox L o SRS 79
12.6.1 F N 4T LU (= 79
12.6.1.1 IS =1 1o TSR 79
12.6.1.2 I NSLANCE AECOMPOSITIONeeiiieeiecie ettt ee s e e s e e te et e eseesre et e e te e teestesseesneesanesneesseenseenseans 80
12.6.1.3 DYNAMIC INSLAINCESecveeteeieeie e sesee s e st e se sttt e e e e s e s te e te e te e teestesseesseesseesseesseeseenseensenneensaessensenn 80
12.6.1.4 L=\ (0] 0]101=: | R 80
12.6.2 BENAVIOU ..ottt ettt e e et e e ettt e e s eaae e e e st et e s sasteeesaaaseasssbeessassssessaseeessabeeessassnesssssenesanseeessanes 81
12.6.2.1 High-1€VEl MSC (HMSC)viueciiiieiciesieie sttt sttt sttt s te et s ta e beste e etesaesaetesaenaesessasaesens 82
12.6.2.2 MSC referenCEIN DASIC IMSC.... ..ottt e e e et e e e e e e e s s eba e e s esab e s s sesaeeessananesssbenessne 84
12.6.2.3 INIINE EXPIESSION ...ttt ettt et b et et b e et b e e e st bt s e et e b s e e st b e e e st ebese e st e b e e e st ebenneneees 85
12.7 [0 - R 86
12.8 Y S S o < PP PPR 87
12.8.1 INCOMPIELE MESSAGESeveeieeieeie e ee st e st te ettt e e aee st e te e beetesaeesseesaeesaeesseenseenseeseeasansteessensennseensenneennns 89
12.9 (0] 0T (1 o 1 89
12.10 2 1o] o SRR 90
12.11 N1 SRR 91
12.12 (00 01 10 I = o 1LY 92
12.13 B L1 0L 93
12.14 General Ordering aNd COMEOIONcoiuiiiiereee e ee e seeete sttt et e e e seesbesaeeaeesee e e eeseesbesaeeseeneensensesaessesneeneeneanens 94
12.15 Relationship between MSC and UML SequencCe DiagraMS..........ceeeeerereriereeeeeeeeeeneeseeseseeseeseeseeseeseeseeneens 95
Annex A (informative): RESENVE WO US.........coiiiiieieii ettt sttt et st s teeneesbesreenesneens 96
N 5 | TR 96
A.ll KIBYWOITS ...ttt bbb bbbt s b sk bbb £ e R b e Rt b e e bt b e e e ae b et eb e n et e 96
A.l2 Lo =0 (< TTaTS0 A0 o [T 97
N 1V TR 97
N T N A 0t TR 98
N 1|V TR 98
Annex B (informative): Summary of QUIAEIINES..........cooiiiiii e e e 99
Annex C (informative): BiblIOGrapNYcceoieii ettt st st seeens 103
[11 (TP ORRRT 104

ETSI

6 ETSI EG 202 106 V2.1.1 (2003-11)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Guide (EG) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).

ETSI

http://webapp.etsi.org/IPR/home.asp

7 ETSI EG 202 106 V2.1.1 (2003-11)

1 Scope

The present document establishes a set of guidelines for the formal use of Specification and Description Language
(SDL) for descriptive, rather than detailed design, purposes. It also provides some guidance on the use of Message
Sequence Charts (MSC), Abstract Syntax Notation 1 (ASN.1) and the Unified Modeling Language (UML) when used
in conjunction with SDL. The objective of the guidelinesis to provide assistance to rapporteurs of protocol standards so
that the SDL that appearsin ETSI deliverablesisformally expressed, easy to read and understand and at alevel of detail
consistent with other standards. The present document appliesto all standards that make use of SDL to specify
protocols, services or any other type of behaviour.

Users of the present document are assumed to have a working knowledge of SDL and, where necessary, MSC, ASN.1
and UML. It should not be considered to be atutorial in any of these notations and should be read in conjunction with
EG 201 383 [1], EG 201 015[2] and EG 201 872 [3].

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

« References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

e For a specific reference, subsequent revisions do not apply.
» For anon-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

[1] ETSI EG 201 383 (V1.1.1): "Methods for Testing and Specification (MTS); Use of SDL in ETS
deliverables; Guidelines for facilitating validation and the devel opment of conformance tests".

[2] ETSI EG 201 015 (V1.2.1): "Methods for Testing and Specification (MTS); Specification of
protocols and services; Validation methodology for standards using Specification and Description
Language (SDL); Handbook".

[3] ETSI EG 201 872 (V1.2.1): "Methods for Testing and Specification (MTS); Methodol ogical
approach to the use of object-orientation in the standards making process'.

[4] ITU-T Recommendation Z.100: " Specification and Description Language (SDL)".

[5] ITU-T Recommendation Z.105: "SDL combined with ASN.1 modules (SDL/ASN.1)".

[6] Voaid.

[7] ITU-T Recommendation Z.120 Corrigendum 1: "M essages sequence chart (MSC)".

[8] ITU-T Recommendation X.680: "Information technology - Abstract Syntax Notation One

(ASN.1): Specification of basic notation"”.

[9] ITU-T Recommendation X.681: "Information technology - Abstract Syntax Notation One
(ASN.1): Information object specification”.

[10] ITU-T Recommendation X.682: "Information technology - Abstract Syntax Notation One
(ASN.1): Constraint specification".

[171] ITU-T Recommendation X.683: "Information technology - Abstract Syntax Notation One
(ASN.1): Parameterization of ASN.1 specifications”.

ETSI

http://docbox.etsi.org/Reference

8 ETSI EG 202 106 V2.1.1 (2003-11)

[12] ITU-T Recommendation X.690: "Information technology - ASN.1 encoding Rules. Specification
of Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished Encoding
Rules (DER)".

[13] ITU-T Recommendation X.691: "Information technology - ASN.1 encoding rules: Specification of

Packed Encoding Rules (PER)".

[14] ITU-T Recommendation X.692: "Information technology - ASN.1 encoding rules - Specification
of Encoding Control Notation (ECN)".

[15] ITU-T Recommendation 1.130: "Method for the characterization of telecommunication services
supported by an ISDN and network capabilities of an ISDN".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:
data type: set of datavalueswith common characteristics
NOTE: Equivaent to the ITU-T Recommendation Z.100 [4] term sort.
implementation option: statement in a standard that may or may not be supported in an implementation
nor mative interface: physical or software interface of a product on which requirements are imposed by a standard

polymor phic: the ability of an operation (SDL method or operator) to have its behaviour specified by a descendant
object type

validation: process, with associated methods, procedures and tools, by which an evaluation is made that a standard can
be fully implemented, conformsto rules for standards, satisfies the purpose expressed in the record of reguirements on
which the standard is based and that an implementation that conforms to the standard has the functionality expressed in
the record of requirements on which the standard is based

validation model: detailed version of a specification, possibly including parts of its environment, that is used to
perform formal validation

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

ASN.1 Abstract Syntax Notation No. 1

BER Basic Encoding Rules

ECN Encoding Control Notation

HMSC High-level Message Sequence Chart
MSC Message Sequence Chart

PER Packed Encoding Rules

Pid Process identity

SAP Service Access Point

SDL Specification and Description Language
UML Unified Modeling Language

ETSI

9 ETSI EG 202 106 V2.1.1 (2003-11)

4 Introduction

The ITU-T Specification and Description Language (SDL) defined in ITU-T Recommendation Z.100 [4] is a powerful
tool for specifying the essential requirements of standardized protocols or services. The level of formality with which
the SDL in a standard is expressed can depend on a large number of factors such as the size and complexity of the
system to be standardized and the skills and experience of the standards writers. The specification of a protocol or
service as a complete forma model enables the validation of the standard before approval and publication. However,
well-constructed, formal SDL has a valuable role to play in providing asimpleillustration of the process-related aspects
of astandardized system.

SDL is most often found in protocol standards with some associated ASN.1 and MSC. Additionally, as the language
specifications converge, SDL is also likely to be used in conjunction with UML in standards. It is, therefore, sensible to
consider the relationships between all of these languages and notations when offering guidelines on SDL. The present
document is concerned primarily with the development of easy-to-read SDL but also provides some guidance on the use
of ASN.1, MSC and UML where this overlaps with the use of SDL.

NOTE: Although in the strictest sense SDL, MSC and UML are considered to be languages while ASN.1 isa
notation, the terms "language" and "notation" are used interchangeably throughout the present document.

In order to gain the maximum benefit from the use of descriptive SDL, it is necessary for a consistent approach to be
taken in its specification by all rapporteurs. In the context of the present document, the term "descriptive SDL" can be
taken to mean SDL whichis:

. formally expressed:
- uses only constructs and symbols that are defined in ITU-T Recommendations Z.100 [4] and Z.105 [5];
. complete:
- is specified asafull model with system, block, process and procedure diagrams as necessary;
- has a comprehensive data specification using SDL data or, preferably, ASN.1,
- uses "correct" SDL,;
- is not necessarily a simulation or validation model;
. easy to read and understand:
- uses meaningful names and identifiers;
- the model structure complements the specification;
- has an open layout which requires a minimum of effort to follow;
- the "how" is hidden from the "what";
- complex programming structures are avoided;
- extensive comments annotate the model;
. at alevel of detail consistent with other standards:
- is not over-engineered;
- is not an implementation model;

- does not constrain implementations to methods and techniques which are beyond the scope of the
standard.

By following the set of simple guidelines presented in the present document, it will be possible for the following
benefits to be realized:

- comprehension of the specification can be improved,;

- ambiguity can be avoided in the translation of the descriptive SDL into a validation model.

ETSI

10 ETSI EG 202 106 V2.1.1 (2003-11)
Achieving consistency in the presentation and level of detail specified across awide range of standardsis one of the
keys to maintaining the perceived quality of ETSI's products.

The guidelines for the use of SDL for descriptive purposes are grouped in the present document according to the
following broad classifications:

- naming conventions,

- presentation and layout of SDL processes,

- the use of procedures, operations and macros;

- the use of decisions,

- system structure, communications and addressing;

- the specification and use of data;

- the use of Message Sequence Charts (MSC) in association with SDL.

Each of the guidelines is highlighted within the document in bold and italic text. They are all collected together in
tabular formin Annex B.

5 Using specification languages in protocol standards

5.1 Introduction

This clause gives some consideration to the process of standardizing communication protocols so that guidance can be
given on where SDL, ASN.1, MSC and UML can be used effectively.

5.2 Layered protocols

There are numerous approaches to the design of communications protocols, each of which isvalid in the situation that it
is used. Probably the most well known and well used isthe SO layered model or a derivative of it where a protocol
system is segmented into distinct logical layers with distinct responsibilities.

The communication between peer layersin thislogical model never takes place directly but is achieved through the
services of the lower layer. However, this peer-level communication is often specified in a standard without
consideration of the signaling between layers. The interface between two adjacent layersis usually called the Service
Access Point (SAP) athough other terms such as user access and network access are also used. Protocol standards will,
in most cases, be considerably simpler if they are restricted either to horizontal communication (peer-to-peer) or vertical
communication (inter-layer). Mixing the two can lead to a confusing specification which is difficult to understand.

5.3 Developing a protocol specification

For many years, protocol standards have been prepared using the three-stage process described in

ITU-T Recommendation 1.130 [15]. Although the detailed practices specified in the present document might now be
considered to be out of date and its use is not as widespread as it once was, the underlying method upon which it is
based is till relevant as good engineering design practice. Simply put, thisis:

1) specify requirements from the user's perspective;
2) develop alogical model to meet those requirements;

3) develop aphysical specification of the protocol.

ETSI

11 ETSI EG 202 106 V2.1.1 (2003-11)

5.3.1 Specifying requirements

Specifying a protocol without first evaluating what it is intended to achieve and what constraints are to be applied to it
will amost certainly end in a poor specification. These requirements can easily be expressed using free text and some
informal diagrams but the use of UML for this purpose (as described in EG 201 872 [3]) means that this information
can be checked by automatic tools and used as input to the later stages of specification.

At this stage of the specification, there should be no need to consider the possible physical architecture of any system
implementing the protocol. Requirements should be expressed, asfar as possible, entirely from the user's perspective
(although the "user" may be aterminal or network application acting on behalf of a human user).

5.3.2 Developing a logical model

Before considering the physical specification of a protocol, there are benefits to be gained by specifying a model based
on logical blocks so that the flow of information necessary for meeting the specified requirements can be defined
without concern for the detailed format that such information should take. The identification of possible normative
interfaces between blocks is also simpler without the constraints imposed by a specific physical architecture.

The overlap between UML and both SDL 2000 and M SC2000 is such that al of these languages are suitable for this
level of specification. In fact, it isunlikely that models devel oped in either UML or SDL 2000 with M SCs would be
appreciably different.

Once the logical model is complete, it is necessary to specify a physical model upon which "real” implementations of
the protocol standard can be based. This model should not, in most cases, be a detailed implementation model but
should be constrained to specify the minimum protocol requirements to guarantee i nterworking between modules from
different suppliers. A good first step towards this physical model isto define a set of legitimate scenarios for the
distribution of the logical blocks within a set of physical entities. Textual tables have traditionally been used quite
effectively for this purpose but UML deployment diagrams can provide a graphical means of presenting these
requirements.

5.3.3 Developing a physical model

If systemsimplementing a standardized protocol are to interwork without problems, it is necessary to specify the
detailed content and format of signals between physical entities and the temporal relationships that must exist between
these signals. For the present document to be complete and accurate, it may be necessary to describe the behaviour of
the physical entities which make up the protocol system.

ASN.1 isgeneraly accepted as the notation to be used within protocol standards for the definition of signal data
structures. Although it is not a particularly intuitive notation to use, it has the significant benefit that there are a number
of standardized sets of rules (for example, Basic Encoding Rules - BER [12] and Packed Encoding Rules - PER [13])
for encoding ASN.1 structures into "concrete" data items with more or less efficiency. In those cases where even PER
does not produce a compact enough encoding, Encoding Control Notation (ECN) specified in

ITU-T Recommendation X.692 [14] enables usersto define and use their own encoding rulesin a standardized form. A
further benefit of using ASN.1 isthat ITU-T Recommendation Z.105 [5] specifies exactly how ASN.1isused in
conjunction with SDL so that data items defined in an ASN.1 module can be used directly in the SDL associated with
that module.

The following simple example uses ASN.1 to specify the structure of an address which comprises alength parameter
and the address value itself

Address ::= SEQUENCE { length BI T STRI NG SI ZE(8)),
val ue CCTET STRING }

M essage Sequence Charts (M SCs) are an ideal notation for describing signal flows and a simple exampleis shownin
figure 1.

ETSI

12 ETSI EG 202 106 V2.1.1 (2003-11)

msc Successful_Setup

CallingUser ‘ OriginatingNetwork DestinationNetwork CalledUser

No_Connection

CallRequest
| SETUP
CALL_PROCEEDING
N IncomingCall
CallAlerting
ALERTING
N CallAnswer
CONNECTED
CallRegestAck
Connected

- - s

Figure 1. Example of a simple MSC

In anything but the simplest protocal, it is not possible to show all of the possible sequences of signals. It is, therefore,
quite acceptable to use MSCsto illustrate only a representative sample of sequences. These examples should specify a
reasonabl e range of successful and unsuccessful situations to enable readers to make an informed judgement of what the
flows would be in other unspecified scenarios.

High level MSC (HM SC) diagrams can be used to provide an overview of the relationships between detailed sequences
of signalsin more complex scenarios. The simple examplein figure 2 shows how an HM SC can be used to segregate
normal behaviour from exceptional behaviour.

ETSI

13 ETSI EG 202 106 V2.1.1 (2003-11)

msc SetupHMSC <7

Normal Exceptional
Behaviour Behaviour

- Y Y

Sucessful_Setup [Setu pFail_lllegalNumber ‘ [Setu pFail_NoResponse
) J v

Y

Connected “

Figure 2: Example HSMC

In order to complete the picture of possible signal sequences, the behaviour of each physical entity needs to be specified
and SDL isan ideal graphical language for this purpose. By using SDL's language features to specify system
architecture, communication paths, signals and behaviour and using ASN.1 to define signal parameter structures, it is
possible to build a complete model. This can then be used to improve the quality of the overall specification by
simulating and testing a range of possible scenarios.

The present document offers a number of guidelines on the use of SDL with ASN.1, MSC and UML to produce
protocol standards that are easy to read and understand and which unambiguously express the requirements for an
implementation.

6 Naming conventions

6.1 General

In common with most modern programming languages, SDL, MSC, ASN.1 and UML permit the use of alphanumeric
names to identify individual entities within a specification. Examples of entities that can be identified in thisway are:

. SDL:
- blocks;
- procedures;
- signals,

- variables and constants,
- instances;

- messages,

- timers;

ETSI

conditions;

. ASN.1:

type references,
identifiers;

value references,

modul e references;

classes and objects;

states;
events,

attributes.

14 ETSI EG 202 106 V2.1.1 (2003-11)

Itislikely that protocol standards will incorporate SDL, MSC, ASN.1 or UML specifications of structure and
behaviour. Frequently, two or more of these are used in combination within the same standard and in these casesit is
certain that some entities defined in one notation will also be used in another. Examples of these are:

- ASN.1 data types which are used by SDL;

- SDL processes which are mapped to M SC instances.

Although the lexical rulesin each notation are similar, they are by no meansidentical. Table 1 identifies the most
significant differencesin the construction of identifiers within these four languages and notations.

Table 1: Significant differences in the lexical rules of SDL, MSC, ASN.1 and UML

Notation

Significant differences

SDL

- name may be hyphenated over more than one line using
the underscore ("_") character

- names may contain non-printing characters (which are
ignored) only if preceded by "_" (which is also ignored)
names may contain " " but not "-"

MSC

Same as SDL

ASN.1

- names are restricted to a single line
- names may only contain printing characters
- _names may contain"-" but not" "

UML

- names are restricted to a single line
- names may only contain printing characters
- theuse of "_" and "-" in names is not specified and are
most likely to be tool dependant
NOTE: In practice, the lexical rules of UML are likely to
vary according to the tool used and the target
software language)

The choice of namesis likely to be affected by the individual application but (Ma naming convention that can be
applied consistently to each notation used should be chosen. Taking this approach will help to avoid ambiguities when
names need to be modified to comply with conflicting lexical rulesin each notation used. Even in those instances where
it is planned to use only one notation, consideration should also be given to the rules of the others when specifying a
naming convention as one or more of these may be used to augment the specification at a later stage.

ETSI

15 ETSI EG 202 106 V2.1.1 (2003-11)

One of the most common such conflicts occurs between ASN.1 and SDL where the use of dash ("-") charactersis
permitted in ASN.1 but not in SDL while underscores (*_") may be used in SDL but not in ASN.1.

ITU-T Recommendation Z.105 [5] specifies that a dash character within an ASN.1 name is mapped to an underscore
when it is converted to SDL. Thisis areasonable approach but it still leaves avisible difference between an ASN.1 type
name and its corresponding SDL type. For example:

Set up-contents in ASN. 1 is equivalent to Setup_contents in SDL.

(Awhileit is acceptable to use the underscore character to delineate words within most SDL entity names, it is
advisable to avoid the use of the dash character in ASN.1 types and valuesin order to avoid conflicts and
misinterpretation in the associated SDL.

6.1.1 Case sensitivity

SDL, MSC, ASN.1 and UML are all sensitive to the case of characters within names. As an example, the name ABC is
not the same as AbC or Abc. The ASN.1 syntax goes further by specifying that names beginning with an upper-case
letter should be interpreted as type references and that those beginning with lower-case letters should be interpreted as
value references or identifiers such as information elementsin a SEQUENCE or CHOICE. Although the case of the
first character of a name does not have the same syntactical significancein either SDL or MSC, it is a useful way of
distinguishing between types and val ues, particularly when used in conjunction with ASN.1. However, (the general
use of names which differ only in character case to distinguish between entities should be avoided.

Although errors are likely to be detected by automatic syntax checking tools, (Dcare should be taken to ensure the
consistent use of character case within names throughout an ASN.1, SDL, MSC or UML specification.

The capitalization of the first character of each word within a name is an acceptable method of delineation between the
component parts of the name.

EXAMPLE: The procedure name, DeliverM essageContents can easily be interpreted to imply that the purpose
of the procedure isto deliver the message contents.

Although it works well in many cases, this method can result in names that are quite difficult to read if they contain
acronyms or larger numbers of short words. Examples of these are:

| nvokeCCBSSuppl enent ar ySer vi ce;
AddOneToTheFi rst|tentf A dDat a.

6.1.2 Length of names

The syntaxes of SDL, MSC, ASN.1 and UML place no restrictions on the number of characters that may be included in
names although, in practice, there may be limitsimposed by the software tools used. It is aso worth noting that very
long names can often be difficult to read. It is not possible impose a strict rule on the length of names but, as a general
guideline, ®names of less than 6 characters may be too cryptic and names of more than 30 characters may be too
difficult to read and assimilate.

6.1.3 Reserved words

Although SDL, MSC, ASN.1 and UML all permit great flexibility in the use of names, there are certain reserved words
which are keywords of the languages themselves and which, consequently, cannot be used as names. Lists of these
reserved words can be found in annex A.

NOTE: SDL keywords may be either all upper-case or all lower-case. Keywords using mixed case are not
considered to be reserved words. For example, both "procedure”" and "PROCEDURE" are SDL reserved
words but "Procedure” is not.

The use of reserved words from one notation can be legitimately used as names within a specification based upon
another but to avoid any conflict across specifications using multiple notations, ®the reserved words of all notations
used within a standard should be avoided as defined namesin each of the individual parts.

ETSI

16 ETSI EG 202 106 V2.1.1 (2003-11)

6.2 SDL and MSC

6.2.1 Use of non-significant characters

It is permissible to split a name across more than one line by introducing an underscore followed by a sequence of
spaces and/or the carriage-return and line-feed control characters. So, the procedure name DeliverM essageContentsin
the example above could aso be expressed as:

Del i ver _

Message_
Contents

Thisisavery convenient notation when trying to fit along name into a graphical symbol, thus:

I

Del i ver _
Message_
Cont ent

l

It is worth noting that the underscore character is only insignificant when used as a hyphenation symbol and that the
name:

Del i ver Message

is not the same as:

Del i ver _Message
athoughitisidentical to

Del i ver _
Message

When a name using underscores to separate words is wrapped over more than one ling, it is necessary to include two
underscore characters where the hyphenation occurs, thus:

Del i ver _
_Message

("Readability isimproved if the same convention for separating words within names is used throughout a
specification. The one case where a combination of methods is recommended is in the use of acronyms within names
that use capitalisation as the method of separation. An underscore on each side of the acronym clearly delineatesit from
the remainder of the name, thus:

I nvoke_CCBS_Suppl enent ar ySer vi ce

®In most cases an underscore character between each word removes any possibility of misinterpretation and thisis
the approach that is recommended.

6.2.2 Multiple use of names

SDL permits entities belonging to different classes to be given the same name. As an example, it is syntactically correct
for a process within a block named Dialling a so to be given the name Dialling (see figure 3). In addition, because of the
scoping rules of the language, it would be possible for a process within another block in the same system to be named
Didling.

ETSI

17 ETSI EG 202 106 V2.1.1 (2003-11)

BLOCK Dialling 1(1)

:

User_ USER INTERNAL Internal_

_Channel Dialling “Link
[Dialling_Response] [User_DiaIIing]g[Analysis_Response] [Dialled_Numbers]

Figure 3. Example of a block and a process with the same name

In many protocol standards, particularly those specifying supplementary services, the system comprises a small number
of blocks, each of which contains only one process. In such situations, the use of the same name for the block and for its
single processis valid but, as SDL allowsit, a better approach may be to omit the block altogether as shown in

clause 10.

O)1n more complex models where each block is made up of a number of processes, the use of the same namefor a
block and one of its constituent processesislikely to cause confusion and should be avoided.

Similar problems can aso exist in the re-use of single names for multiple entities. For example, it is possible to have the
same name for asignal list and for one of its constituent signals. As ageneral guideline, (19the use of a single name for
multiple purposes should be avoided wherever possible.

6.2.3 Making names meaningful

The freedom and flexibility allowed in the construction of names can be used to great benefit in improving the
readability of a specification. If there is an entity whose function is to represent an alarm clock then it can be called
Alarm_Clock and there are no constraints to force the use of a more cryptic name such as Alm_CIk. However, this
freedom can be abused and it would be quite legitimate for the alarm clock to be given the name

The Thing_Beside The Bed That Makes A_Loud Noise In_The Morning which is equally as unacceptable as the
cryptic style.

Although it can appear useful during the development of a protocol standard, (Dthe addition of project-specific
prefixes or suffixes can make meaningful names appear cryptic and should be used with great care.

Apart from the general recommendations above, certain specific guidelines apply to each group of identifiable entities.

6.2.3.1 Block, process and instance names

(12)By giving blocks, processes and M SC instances names that represent the overall role that they play within the
system, it is possible to distinguish process names from procedure names. I f carefully chosen, they can help to link
the SDL and M SC back to the corresponding clausesin the text description. Examples are:

ori gi nati ng_PI NX;
Scenari o_Managemnent ;
Functional _Entity_FE2;
al arm cl ock.

As can be seen, these names are al nouns which indicate the general function of the process.

6.2.3.2 Procedure, operator and method names

Procedures, operators and methods (SDL operations) are key elements in breaking a complex process down into
meaningful layers (see clause 8.1). For this to be effective, (:3the name chosen for an SDL operation should indicate
the specific action taken by the operation. Examples are:

Extract _Cal I i ng_Nunber _From SETUP;

get _user_profil e_from dat abase;
Send_Response;

ETSI

18 ETSI EG 202 106 V2.1.1 (2003-11)

ring_al armbell.

The names chosen here are all verb phrases indicating the specific activity to be carried out by the operation.

6.2.3.3 Signal names

There are often constraints on the length of signal names as they usually have to appear in quite small spaces within
SDL symbols. It is, therefore, more difficult to arrive at meaningful names for them. However, poor naming of signals
can make SDL and M SC very difficult to read, even when most other aspects are well presented. For example, the name
Rep_Sgl _Err could easily be interpreted to mean:

Report Signal Error;
Report Single Error;
Repeat Signal Error;
Repeat Single Error.

The obvious approach is to express the name in full as, for example, Report _Si gnal _Er r or but this, again, is quite
long. The problem can be overcome by using unambiguous abbreviations or abbreviations that arein common use. In
the exampl e above, Err is generally accepted as meaning "Error". Also, changing Sgl to Sig would make it much clearer
that it was an abbreviation for "Signal" not "Single". (19 possible, it is advisable to leave at |east one significant word
in the name unabbreviated asthis can help to provide the context for interpreting the remaining abbreviations. So
the exampl e above would be acceptable if expressed asReport _Sig_Err.

6.2.3.4 Signal list and interface names

SDL provides two mechanisms for collecting signals together into named logical groups. These are signallists and
interfaces as described in clause 10. For the purpose of defining names, these two can be treated identically.

In order to improve clarity, it is often advisable to group signals into interfaces or signallists according to their
capabilities and, consequently,(15the name chosen for an interface or signal list should indicate the general function
of the grouped signals, for example:

UNI _Messages;
Mobi lity_Managenent ;
user _i nput .

Asan dternative and particularly in simple specifications (16)where all signals between one block or process and
another can be logically grouped together, signal list names can be chosen to indicate the origin and the destination
of the associated signals. Examples of this approach are as follows:

home_PI NX_t o_vi si t or _PI NX;

HLRA t o_HLRB;

| ocal Exch_to_user;

bet ween_AccessManagenent _and_Cal | Control .

6.2.3.5 SDL state names

In most protocol standards, the SDL specification includes a large number of states and it is often tempting to assign
cryptic and sequential names such as state 5 or N3. Taking the time to formulate meaningful names for each state can
add significantly to the readability of an SDL specification.

(17)A state name should clearly and concisely reflect the status of the process whilein that state. Examples of such
names are:

1 dle;

Wi t _For _SETUP_Response;
Ti m ng_Si gnal _Del ay.

(18)If it is important to number states then this should be done in conjunction with meaningful names such as:

Rel easi ng_01;
Ti m ng_Response_4.

ETSI

19 ETSI EG 202 106 V2.1.1 (2003-11)

6.2.3.6 Names of variables and constants

It is more difficult to specify some simple guidelines for the construction of names for variables and constants as they
have widespread and diverse uses. It is still important to ensure that the name is meaningful in the context of the SDL
specification. 19The name chosen for a variable should indicate in general terms what it should be used for. For
example:

SETUP_nessage_contents;
User _I nput ;
Al arm Ti ne.

(20)Names used to identify constants can be more specific by indicating the actual value assigned to the constant. For
example:

User _Not _Known;
Twenty_Five;
Characters_A To_Z.

6.2.3.7 Timers

Although the use of meaningful timer names, such asResponse_Sani ty_Ti mer , would improve the overall
readability of a specification, it has become accepted practice to use the shorthand T1, T2, T3 etc. for timers within
standards for protocols. To avoid confusion, the Tn notation should be used when naming timers unless an opportunity
arises to use extended names in a completely new project where the use of the shorthand is not aready established.

6.3 Data types

The definition of the ASN.1 notation, ITU-T Recommendation X.680 [8], specifies that type references must begin with
an upper-case character and that value references and identifiers must begin with alower-case character. When using
ASN.1 in protocol standards, it has become the convention that a val ue reference uses the same name as its associated
type reference (except where there are more than one value references derived from the same type reference) but that
one is distinguished from the other by the case of its first character, thus:

-- Exanple of the use of identifiers with type references
Dog ;1= SEQUENCE ({
br eed Br eed,
nanme Nane }

Br eed ENUMERATED {
poodl e,
spani el ,
al sati on,
boxer }

Name

PrintableString

-- Exanple of the use of a value reference with a type reference
dogl D Nane ::= "Rover"

For readability the name br eed is preferable to bREED, even though the latter is, strictly speaking, permissible.

Although al data types associated with normative signals will usually be defined in ASN.1, other types can be specified
using SDL's own data language features. For the sake of consistency with ASN.1, (?Dthe names of SDL data types
should be capitalized while the names of literals and synonyms should begin with a lower-case character.

7 Presentation and layout of diagrams

The syntaxes of both SDL and UML allows great freedom in the presentation and layout of both text and graphical
symbols. Good presentation can considerably improve the readability of a specification whereas bad presentation can
render it unintelligible. It is also worth noting that a single error resulting from the misunderstanding of a poorly
presented diagram can be much more costly than all the pages of paper saved when packing symbols and diagrams
tightly.

ETSI

20 ETSI EG 202 106 V2.1.1 (2003-11)

Itisin SDL behaviour descriptions and in UML activity diagrams that presentation and layout have the most impact and
the following aspects should be considered within a standard:

- the general flow of behaviour across a page;

- the spreading of diagrams over more than one page;

- the use of text extension symbols (in SDL);

- the alignment and orientation of symboals;

- the use of swimlanes (in UML - see EG 201 872 [3)]).

7.1 The general flow of behaviour across a page

SDL and UML both allow the lines connecting symbolsto flow in any direction across a page. As an example, the
process shown in figure 4 islegal SDL but is quite difficult to read.

PROCESS Flow_Example_1 2(4)

D

idle

SETUP Analyse_Input
(setupInf e

(setup_Info|
| D

RELEASE_
_REJECT

Status, Cau

success

\

Failure

FAILURE_
_RESPONSE
(Cause)

SETUP
(setupinfo)

[e

idle RELEASE idle

o

Figure 4: Example of poor layout of legal SDL

The readability of this processis greatly improved simply by laying it out in a "top-to-bottom” form, asin figure 5.

ETSI

21 ETSI EG 202 106 V2.1.1 (2003-11)

PROCESS Flow_Example_2 2(5)

C D

idle

RELEASE

Analyse_Inpuft
(setup_1nfo,
Status, Causfg)

Failure success

RELEASE_ Z’;E'S-gggE SETUP
_REJECT (Cause) (Setupinfo)
idle idle

Figure 5: Example of improved layout

The orientation of flow between symbolsin SDL and, to alesser extent, in UML is naturally vertical and it is, therefore,

easier to read diagrams that follow this convention. Thus, (?dthe general flow of SDL behaviour diagrams and UML
statechart and activity diagrams should be from the top of the page towards the bottom. However, in some UML
instances the flow may be better expressed using a left-to-right flow across the page.

Even in class diagrams and others where there is no "flow" expressed, readability can be improved if thereis a general
top-to-bottom layout on the page based on hierarchy or some other pertinent characteristic.

7.2 Behaviour covering more than one page

7.2.1 SDL behaviour diagrams

In most cases within standards it is not possible to constrain SDL process descriptions to one page. Only two options
exist for breaking a diagram across a page boundary without affecting the readability. These are:

- using the NEXTSTATE symbol;
- using a connector symbol.

If it can be accommodated within the general structure of a description, (23the flow on a page of an SDL process
should end in a NEXTSTATE symbol rather than a connector as shown in figure 6 and figure 7. In general, this
makes specifications easier to read. In addition, (?4)states that are entered from NEXTSTATE symbols on other pages
should always be placed at the top of the page.

ETSI

22 ETSI EG 202 106 V2.1.1 (2003-11)

PROCESS Page_example_1 1(2)
DCL
Action Request Type;
Ti meNow Ti neType;
AckSt at us AckType;
IdleState
GetCurrentTime

Userreques

(Action) < ————— From User

@ UpdateUserLog

Send_Time Test

Get_

CurrentTime

(TimeNow)

SendTime

! TestMessage

TimeN

A TO SENDER

waitForack IdleState

Figure 6: Paging using NEXTSTATE symbol (page 1)
PROCESS Page_example_1 2(2)

waitForAck

——

UserAck E U
(Ackstatus rom User

Update_ (Action, TimeNow,
UserLog AckStatus)
Idlestate

Figure 7. Paging using NEXTSTATE symbol (page 2)

Although it would be possible to draw the example shown in figure 6 and figure 7 in a single thread with the
WaitForAck state embedded part-way through, it is easier to locate individual statesin a more complex specification if
each thread is limited to asingle transition (the processing between one state and the next one). (2Where transitions
are short and simple they can be arranged side-by-side on a single page as shown in figure 8. However, (26)when two

or more transitions are shown on one page, there should be sufficient space between them to make their separation
clear to thereader.

ETSI

23

ETSI EG 202 106 V2.1.1 (2003-11)

PROCESS Alignment_example 1(3)

DCL
Qall Params ReqType,
Resul t Res Ty s
G ErTpe. construct_ Analyse

< > ErrorSignal
T MER T4 : = 10*ns;

construct_
dlestate onwardRequest
—
\ |

CallRequest From User_1

(Call. <&-----4 From User_1 Eleﬂggt -

Params) a No call in
progress
so ighore
request

Analyse +—— (callpParams, Result)

Result Caller_
Not_
Userknown UserNotKnown Authorised

Construct_ Construct_ Reject_

Onward_ +—— (callpParams) Errorsignal Request

Request (Cause) TO User_1

. Request_
%_T.i;tﬁ mer Error TO User_1
(Cause)

cll_

Request TO User_2

(CallpParams,

waitFor_
Request_
Response

IdleState

(IdleState) (IdleState)

Figure 8: Transitions aligned on a single page

When a single transition extends beyond the length of one page, a connector symbol can be used to provide alink to the
next page. An exampleis shown in figure 9 and figure 10.

ETSI

24

ETSI EG 202 106 V2.1.1 (2003-11)

Analyse

DeCrypt

validate

DCL
User I D

| Dst at us
User St at us

| Dtype,

Val i dType

TIMER T7 : = 3*secﬁj

Encrypt Type

PROCESS Join_example_1

waitForInput

——

validate_
User From Network
(Userib)

Analyse
(Userip,
IDstatus)

IDstatus

Encrypted Plain

DeCrypt
(Userin)

IPproc

1(4)

Figure 9: Paging using a connector symbol (page 1)

ETSI

25 ETSI EG 202 106 V2.1.1 (2003-11)

PROCESS Join_example_1 2(4)

validate
(UseriD,
userstatus)

validated Not_validated

StartTimer
a7

User_ User_

validated VIA Network Notvalidated VIA Network
(Userib) (UseriD)
waitForInput waitForInput

Figure 10: Paging using a connector symbol (page 2)

As can be seen in figure 9 and figure 10, the syntax of SDL allows a connector symbol to have a process flow line to it
or from it but not both. Figure 11 shows how it is possible for a connector to be attached to a symbol anywhere on a
page. These can be difficult to locate and so, to avoid confusion, (27)connector symbols should generally only be used

to provide a connection from the bottom of one page to the top of another. However, long transitions can often be
avoided by careful use of procedures (see clause 8.1).

A=B+C @

Update_Records
(A)

Figure 11. Example of poor use of a connector symbol

7.2.2 Definitions in behaviour diagrams

An SDL process description (which may exist in a system, block or process diagram) should not be considered to be
simply a"flow-chart" specifying a sequence of actions and decisions to be taken by a particular entity. In order to be
complete, a process description may include the following:

- a specification of formal parameters;
- variable, signal and data definitions;

- class and interface definitions;

ETSI

26 ETSI EG 202 106 V2.1.1 (2003-11)

- procedure references,
- class reference;
- the process graph, itself.

Symbols such as procedure references and text boxes containing DCL, TIMER and other declarative statements are
valid for all pages of the processin which they appear. The SDL syntax allows them to be drawn on any page but, for
easier reading, (®all reference symbols and text boxes containing common declarations should be collected together
at a single point within the process diagrams. For simple processes, and where space allows, these symbols can be
placed together on the first page with the first transition, as can be seen in figure 8 and figure 9. In other cases, a
separate page (or pages, if necessary) can be used to collect these symbols together.

To further improve the readability of the SDL, (29separate text box symbols should be used for each different type of
declaration (for example, variable declarations, timers, signal specifications, data type specifications and formal
parameters). It can also be useful to sub-divide these groupings into separate text boxes according to
application-specific criteria (for example, grouping all of the BOOLEAN SYNONY M definitions together).

7.2.3 UML activity diagrams

UML does not support the concept of physical pagesin its specifications but it may still be necessary to spread a
distinct element of behaviour over more than one activity diagram. In thisinstance, there is only one mechanism that
can be used for linking the diagrams and that is by using a state symbol. An activity diagram which terminatesin a state
other than the "End" state, will be assumed to continue at a subsequent instance of the same state in another activity
diagram. In the example shown in figure 12, the activity in the right-hand part of the diagram continues on from the
"Connected" state on the left-hand side. Particularly in those cases where the specification of behaviour is distributed
over many diagrams, (39activity diagrams or statechart diagrams should use text boxes indicate what functions are
specified in other diagrams or in which diagram the behaviour continues.

At System Startup

Continued from diagram Connected
E "Setup_Pagel"
e

SETUP(CalledPartyID) RELEASE|"RELEASE_ACKNOWLEDGE
[CalledPartyID Invalid] "'SETUP_REJECT
Check Called
Party ID Idle
[CalledPartyID Valid] /CALL_PROCEEDING At System Shutdown

Connected Activity continues in
Diagram "Setup_Page2"

Figure 12: Example of UML activity diagram pages linked at a state

ETSI

27 ETSI EG 202 106 V2.1.1 (2003-11)

7.3 Text extension symbols

The SDL symbols are not always large enough to contain all of the text necessary to specify the task represented by the
symbol and if the character size is set to avalue that makes it readable, the text spills over into the area surrounding the
symbol as can be seenin figure 13.

UserErrorRep
(UserID, Failure
Supplementaryjfo)
TO Network

Figure 13: Text overflowing a symbol

This can be difficult to read and, in the strict sense of the language, is syntactically incorrect. Therefore, (3Dwhen the
text associated with a task symbol overflows its symbol boundaries, a text extension should be used to carry the
additional information as shown in figure 14. The syntax of SDL specifies that the text in the extension symbol is
added after the text in the task symbol. To avoid misinterpretation, care should be taken to ensure that the text extension
symbol appearsto the right of or below the task symbol unless all of the text is placed in the extension symbol.
However, as a general rule the text extension symbol should not contain all of the text. For example, in the case of
signals, the signal name should be placed inside the input or output symbol.

(UserID, FailureCode,
UserErrorRep Supplementarylnfo)
TO Network

Figure 14: Use of Text Extension symbol

Even in cases where the text does not overflow the symbol, thisis a useful presentation method which can be used to
separate the signal name from the parameter list in inputs and outputs. For reasons of clarity, it is not advisable to split
the parameter list between the primary symbol and the extension.

As an dternative to the use of atext extension symbol, SDL permits the re-sizing of both a task symbol and the text
contained in it.

7.4 Alignment and orientation of symbols

7.4.1 Alignment

Neither SDL nor UML place any semantic significance on the placement and alignment of symbols but a process or
activity page that is carefully arranged and not over filled with symbols and connecting lines will always be easier to
read and interpret than one that is not.

ETSI

28

ETSI EG 202 106 V2.1.1 (2003-11)

Thereis no particular benefit to be gained by aligning symbols of a particular type except that (32symbols that
terminate the processing on a particular page should be aligned horizontally to make it easier for the reader to
identify all of the points where processing ceases or continues on a new page or thread. These symbols include:

- SDL NEXTSTATE symbol

- SDL Connector symbol

- SDL STOP symbal

SDL RETURN symboal

X

- UML STATE symbol

]

O - UML END STATE symboal @

In the example shown in figure 15, the processing on the page can end in anumber of different states. The alignment of
all of the associated NEXTSTATE symbols at the bottom of the page makesit clear what all of these possibilities are.

PROCESS Alignment_exam

D

ple

DCL
Qall Parans ReqTyp

1(3

Resul t FésType:
Cause B r Type;

construct_
ErrorSignal

Analyse

TI MER T4 : = 10*ns;
construct_
Idlestate onwardrRequest
—
\ \

CallRequest From User_1

(Call. <&-—----—+ From User_1 Eleﬂggt B .

Params) g No call in
progress
so ignore
request

Analyse (CallpParams, Result)

Result caller
Not_
Userknown Use rNotknown Authorised

Construct_ Construct_ Reject_

Onward_ (callpParams) Errorsignal Request

Request (Cause) TO User_1

. Request_
%i;ﬂﬁmer Error TO User_1
(Cause)

call_

Request TO User_2

(CallParams

waitFor_
Request_
Response

Idlestate

(IdleState > (IdleState)

Figure 15: Example showing the alignment of NEXTSTATE symbols

ETSI

29 ETSI EG 202 106 V2.1.1 (2003-11)

7.4.2 Orientation

Most SDL symbols are symmetrical and, thus, cannot be shown in different orientations. INPUT and OUTPUT symbols
are different in that they can be shown either right facing or left facing, thus

SDL accepts both orientations as correct but does not assign any specific meaning to either. However, (33in simple
systems where each process communicates with only one or two other processes, the orientation of INPUT and
OUTPUT symbols can be used to improve the readability of the SDL. However, to avoid possible specification errors
and misinterpretation, explicit methods of identifying the source and destination of signals should be used. Symbol
orientation should not be considered to be a substitute for the use of a"From" comment on an INPUT or the TO and

VIA statementsin an OUTPUT as described in clause 10. (341 f used, the significance of the orientation of SDL
symbols should be clearly explained in the text introducing each process diagram.

7.5 Structuring behaviour descriptions

The behaviour of an SDL system is mainly described in process diagrams which represent the topmost layer of the
behaviour specification. Partial behaviour descriptions can also be described in procedures, methods and operators. For
readability it isimportant that the behaviour specification is organized and presented in such away that each reader can
easily find information of particular interest. It isimportant to bear in mind that a standard is often read in different
contexts at different times. For example, at one time it may be used to gain an overall understanding of the specification
while at another time it may be read in order to extract some specific details.

7.5.1 Basic structuring principles

The key structure within a protocol or service behaviour description is the relationship between a process state, the
events that trigger some form of process reaction, the actions that are taken and the resulting state. Process graphs
should be structured in such away that these relationships are easy to see, as shown in figure 16. 39A state, input and
the associated transition to the next state should be contained within a single SDL page.

PROCESS Setup 2(3)

call_
Established

?2;??;;) From called Party

Release_
Response

?E;??;s) via UserLink

Release_Nw_
_resources
(callzd)

via NetworkLink

waitFor_
Release_
Response

Figure 16: Simple transition

ETSI

30 ETSI EG 202 106 V2.1.1 (2003-11)

7.5.2 Structuring using procedures and operations

Within a standard, the most important actions taken between process states are the generation of output signals. If the
flow of control leading from one process state through input and outputs to the next state cannot be contained within a

single SDL page, some of the detail should be hidden using procedures and operations, as described in clause 8 or
composite states as described in clause 10.

7.5.3 Emphasizing the difference between normal and exceptional
behaviour flows

Within their textual descriptions, standards often make the distinction between normal and exceptional cases. This
distinction can also be used effectively in the SDL. Figure 17 shows an example where the analysis result splits the flow
into normal behaviour which is specified on the same page and error handling which is specified on another page. This
allows the reader to concentrate on the normal behaviour and to look at the various error handling situationsif and when
that is required.

PROCESS DestinationNode 2(8)

Idle

——

Setup l
(call_ \)\\ ‘From TransitNode

Parameters
(callpParameters,
Result)

Analyse_
Parameters

Result

validparameters Else

gg;gs;our Egggggse ::>%*v1a TransitNetwork
omectio ror- ehavionr
connection Case described on Page 5

Figure 17: Part of process diagram showing only normal behaviour flow

ETSI

31 ETSI EG 202 106 V2.1.1 (2003-11)

The separation of normal and exceptional behaviour may also bring benefits to the standard development process, so
that specification of normal behaviour becomes stable before error handling issues are addressed. Wherever it is
appropriate and convenient, (36)process diagrams should segregate normal behaviour from exceptional behaviour. In
such cases, it isaso useful to use atext symbol to identify each page of a process as either "Normal Behaviour” or
"Exceptional Behaviour", as shown in figure 18:

PROCESS Setup 3(3)

/** Nor mal
Behavi our **/

waitFor_
Release_
Response

Release_ .
Response é—\ﬁ'om Calling Party

Re]ease
Terminal_
Resources

(callzd)

Idle

Figure 18: Labelled page of normal behaviour

8 Using procedures, operations and macros

8.1 Procedures

In common with most programming languages, SDL procedures provide a mechanism for the modular specification of
behaviour that can be used in different contexts.

An important aspect from the point of view of a standards specification is that procedures can be used to hide
distracting detail. By moving detail to procedures, the reader is presented with a clear and concise overview of the
required behaviour even though the detail can be viewed if it is required. 3))The use of procedures to modularise
specificationsand to " hide" detail is strongly recommended.

As an example, there may be a requirement in a standard that the contents of an incoming message are analysed and that
subsequent processing be based on the results of the analysis. The method of analysisis not an issue for the standard
and, as can be seen in figure 19, such detail can distract from the main purpose of the process. If, asis shownin

figure 20, the detail is removed to a procedure, the reader isleft with the information that the message isto be analysed
but without the distraction of how the analysis is undertaken.

ETSI

32 ETSI EG 202 106 V2.1.1 (2003-11)

PROCESS Example_1 2(4)

wait_For_
_CONNECTED

CONNECTED
(Setup_
_Result)

Status :=

Setup_Result!
call_status

Status
Failure
success
Destination := ErrorCause :=
Setup_Result! Setup_Result!
called_Party Errorcause
rror_
Cause
UserNotKnown NoNwResponse
NoRouteToUser IncompatibleServices
Cause := Cause := Cause := Cause :=
Usererror NetworkError Usererror NetworkError
\ L |
FAILURE
SUCCESS . . <
RESPONSE (Destination) —RESPONSE
- (cause)
Connected idle

Figure 19: Message analysis example without the use of a procedure

ETSI

33

ETSI EG 202 106 V2.1.1 (2003-11)

PROCESS Example_2

wait_For_
_CONNECTED

CONNECTED
(Setup_
_Result)

3(6)

ﬂ Analyse_Input

(setup_Result, Status,

Cause, Destination)

Status

success

SUCCESS_
_RESPONSE

Connected

(Destination)

Failure

FAILURE_
_RESPONSE
(Cause)

1dle

8.1.1

Figure 20: Message analysis example using a procedure

Using procedures to replace informal tasks

In existing standards, it is common to see informal text included in an SDL task box as an item of useful, and often
normative, information. For example:

NOTE:

Stimulate the
release of the
basic call

and

ETSI

Get user address
from the database

Although the text shown in the task symbols above is shown exactly as it most often appearsin existing
standards, it isimportant to recognize that without single quotation marks around it ('..") itisillegal SDL.

34 ETSI EG 202 106 V2.1.1 (2003-11)

This notation is very easy to understand but it is not possible simulate or validate the action in the symbol. According to
the strict definition of SDL, the text, " Stimulate the release of the basic call”, isinterpreted as a name at the start of an
incomplete, and therefore incorrect, assignment statement. To make such expressions formal and executable, (38)convert
informal text descriptions of actionsinto procedure calls and replace the task symbolswith a procedure symbols,
thus:

Stimulate_ and Get_UserAddress_
_Release_of _ From_Database
BasicCall (Userld,UserAddr)

Note that in converting such text into a procedure call it may be necessary to add parametersto fully formalize the
interface to the procedure.

8.1.2 Procedure signature (parameters and returned values)

A procedure interface specification identifies a set of parameters for the procedure and defines how these parameters are
passed to and from the procedure. (39All data relevant to the real behaviour represented by a procedure should be
specified in the parameter list and returned value (if any). This meansthat a signature is specified which allows the
contents of the procedure to be updated at a later stage without affecting the other parts of the specification.

The specification for a procedure signature can include:
. dataitems that are to be passed to the procedure (IN parameters);

. dataitems that are to be passed back to the calling process. These can be specified as either IN/OUT
parameters which are passed to the procedure and modified within it or OUT parameters which can only be
passed from a procedure but not to it. These returned parameters can be specified as:

- alist of one or more items which appear in the calling statement. An example of acall to such a
procedureis as follows:

Procedure call Procedure signature
Get_Position(identifier, X_Coord, Y_Coord);
L Output parameter G(e} NPOSi ! Pdentifier,
Modifiable input parameter 'OL’\}’rOUT é:gg: 35

Input parameter

- asingle value associated with the procedure name itself. The following is an example of acall toa
procedure of thistype:

Procedure call Procedure signature

Calling_Party := Extract_Originator(Setup_Data);

Extract _Ori gi nat or
Input parameter [(IN Setup_Data) -> Party_Nunber

Result

Figure 21 and figure 22 show simple examples of each of these procedure types while figure 23 shows how the
procedures could be called.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11)

35
PROCEDURE Convert_To_degF 1(D
(IN degC Temperature) -> RETURNS Temperature;
DCL degF Tenper atur%
degF :=
((degc * 9)/5) + 32
degr
Figure 21: Example of a value-returning procedure
1D

PROCEDURE Convert_Abs_To_F_and_C

(IN degA Temperature,
OUT degF Temperature,
OUT degC Temperature);

)

degC :=
degA + 273
degF :=
((degc * 9)/5) + 32

Figure 22: Example of a procedure returning values in the parameter list

ETSI

36 ETSI EG 202 106 V2.1.1 (2003-11)

PROCESS ProcCalleExample_1 2(3)

convert_To_degF

convert_Abs_
_To_F_and_C

wait_For_ Receives Thermometer reading wait_For_ Receives thermometer reading

_Thermometer_t - - — 4 in Centigrade, converts to _Absolute_ - - - 41in Absolute, converts to both

_Reading Fahrenheit and sends it out _Temperature Centigrade and Fahrenheit and
sends them out

Temp_F :=

Convert_abs
CALL Convert_ (Temp_C) . (Abs, Fahr, Cent)
To_degF _To_F_and_cC

SEND_THERM
(Temp_F)

SEND_
_THERM_C
(Cent)

wait_For_
_Acknowledge

wait_For_
_Acknowl edge

Figure 23: Examples of procedure calls

Procedures which return a value associated with the procedure call itself (see figure 21) can be used in place of
variables in decisions, assignments, and output parameter lists to hide some of the detailed processing which is not
essential to the understanding of a standard. However, (40in most casesit is preferable to use operations instead of
value-returning procedures.

Procedures defined within the scope of the process calling them can access the variables belonging to that process.
Accessing data in this way, particularly writing to a process variable from within a procedure, can result in a confusing
specification. In order to avoid the possibility of this confusion and any other unexpected side-effects (4Dprocedures
should only read and write to variables that are passed to the procedure in the parameter list or are declared within
the procedure itself.

8.1.3 Procedure body

The behaviour specified within a procedure can be more or less complex depending on the application. In the example
shown in figure 20, the Analyse Input procedure should be completed so that automatic tools can be used to check the
syntax and semantics of the SDL. The following methods can be used:

1) providea"dummy" procedure that does nothing (see figure 24);

thisis adequate where the detailed behaviour of the procedure is not considered to be normative even though
the overall function of the procedure may be. Figure 20 above is an example of this. It isimportant to include
the dummy procedure in the standard as its formal parameters and results statements serve to define what, in a
full implementation, the interface should be between the calling process and the function expected of the
procedure.

ETSI

37 ETSI EG 202 106 V2.1.1 (2003-11)

2) provide aprocedure that usesan ANY decision to arbitrarily return one of the possible values without actually
specifying how the value is determined (see figure 25);

thisisan ideal approach if the SDL model isto be validated by an automatic tool asit ensures that all possible
result values are evaluated during the validation process.

3) provide aprocedure that specifiesin detail the behaviour expected (see figure 26);

thisis the best approach in cases where the procedure has been used to hide complex behaviour but that
behaviour is considered an important and normative part of the standard. It would also be advisable to use this
approach when simulating the full behaviour of the model.

Whichever method is chosen, (42) procedures should specify a level of detail that is suitable for the particular purpose
of the standard. At a minimum, the procedure should express the requirements it is modelling, even if thisissimply a
comment or areference.

PROCEDURE Analyse_Input_Example_1 1(D
(IN Conn ConnectType,

ouT Cause RespErrType,

OUT Dest PartyNumber);

I*

The true purpose of this procedure
woul d be to analyse the contents of
a GONNECT nessage, extracting and -
returning the address of the called

pummy procedure with
no specified behaviour

party i f the call was successful or
the error cause (UserError or
NetworkBEror) if unsuccessful.
Refer to Subclause 6.4.5 for a
detai led descri ption.

*/

Figure 24: Example "Dummy" procedure

ETSI

38 ETSI EG 202 106 V2.1.1 (2003-11)

PROCEDURE Analyse_Input_Example_2 1(D
(1IN Conn GonnectType,
OUT Cause RespErrType,
OUT Dest PartyNumber) ;
pumy procedure which
- - - — 4 generates _outﬁ;ut parameter
/*Define a synonymto represent any values suitable for validation
party nunber. nly one val ue (1234
is generated.*/
SYNONYM
TestPartyNunber = 1234; Decision would normally be based
ANY - - —4on '"Cause' which has the Titeral
values, "NoError", "Usertrror" and
"Networkerror"
/*NoError*/ /*UserError*/ /*NetworkError*/
Dest =
Test_
PartyNumber
Cause := Cause := Cause :=
NoError UserError NetworkError

\ N \

Figure 25: Example of a simple procedure suitable for validation purposes

ETSI

39 ETSI EG 202 106 V2.1.1 (2003-11)

St at us
ErrCau

PROCEDURE Analyse_Input_Example_3 1(D)
(IN Conn ConnectType,

OUT Cause RespErrType,

OUT Dest PartyNumber);

DCL

Procedure specifying particular
Cal | St at usType; behavionr pecitying p
se ConnErrorType

Status :=
conn!call_status

Status

success Failure
Dest := ErrCause :=
conn!called_party conn!ErrorcCause
Errcause
UserNotknown NONWResponse
NoRouteToUser Incompatibleservices
Cause := Cause := Cause := Cause :=
UserError NetworkError UserError NetworkError

&

8.1.4

Figure 26: Example detailed procedure

Avoiding side-effects

Each procedure should have alimited and clearly identifiable purpose which should fall into one of the following two
categories:

1)

2)

In either

Procedures that either analyse something or calculate something from input parameters and return a val ue that
represents the result of the activity.

Some programming languages refer to this use of a procedure as a function. 43)A functional procedure
should fulfil its specified role and do nothing that could be considered to be a side-effect. For example, a
procedure that analyses the parameters received with a message should return a val ue that determines the
future behaviour of the calling process. That behaviour may include sending of signals. “9The processing of
signalsis one of the most important activities shown in the SDL of a protocol standard and should normally
be visible in the calling process rather than the called procedure. Equally so, if the purpose of a procedureis
to calculate something, it should do that and nothing el se.

Procedures that generally do not return any value but have alimited sequence of actionsto perform.

These actions are worth putting in the procedure provided that the same sequence of actionsis repeated in
many situations. In this case it may be appropriate that one or more related signals are sent from within a
procedure. However, 49)it isimportant that procedures that specify a limited sequence of actions should be
given names that reflect as fully as possible the activity performed by a procedure.

case, (“6)behaviour that could be considered a side-effect to its defined purposes, should not be specified in a

procedure.

ETSI

40 ETSI EG 202 106 V2.1.1 (2003-11)

The specification of states within procedures obscures the processing of inputs and the overall synchronization of the
calling process. Although not generally recommended, it is reasonable in some exceptional cases for a procedure to
include the specification of states. Such situations are rare but an example would be a procedure which starts a 500 ms
timer and excludes al other processing until the timer expires. In this case, a state is necessary in order to receive the
timer expiry

(471n the exceptional case that a procedure includes the specification of one or more states, it isimportant to ensure
that all signalswhich are not directly processed within the procedure are correctly handled for subsequent
processing. This can be accomplished in one of the following ways:

- explicitly receiving al possible input signalsin al statesin the procedure;

- using the "SAVE all inputs' symbol which ensures that all signals that are not explicitly processed in the state
are maintained as inputs until the next state is reached (see the example in figure 27).

A simple example of a procedure containing a state symbol is shown in figure 27.

PROCEDURE Delay500ms 1D

/* The timer T500 is defin
inthe calling process as
foll ows:

T MER T500 : = 500*nsec;

D

StartTimer ~_ |A macro which is used to
(T500) start the timer.

*/

wait_
_For_Timeout

—
\

T500 «] Save all other inputs to be

/*Expiry* received in the calling process

Figure 27: Example of a procedure containing a state

8.1.5 Naming of procedures

Procedure names should follow the naming conventions described in clause 5 and should attempt to clearly reflect the
purpose of the procedure without requiring detailed knowledge of the contents of the procedure (e.g., Analyse SETUP).
(48)The names of procedures having multiple effects should reflect each intended effect either individually or
collectively. For example, a procedure that builds and then transmits a SETUP message might be named
"BuildAndSend_SETUP".

ETSI

41 ETSI EG 202 106 V2.1.1 (2003-11)

8.2 Operations

In many situations operations represent a viable alternative to procedures. There are, however, some useful differences
between them:

- operations are not permitted to have states,
- operations are not permitted to send signals;
- operations are permitted to access only parameters and variables declared inside the operation;

- operations may be used wherever procedures are valid but, unlike procedures, they can also be used in
continuous signals.

Thus, operations inherently have many of the desired characteristics of value-returning procedures described in
clause 8.1.4.

An operation is one of two kinds indicated by the keyword in the signature:
. operator with alist of parameters. Must return aresult and is used as an expression;

. method with alist of parameters. Has an optional result and must be applied to an expression (usually a
variable but it can, for example, be a method application) by means of the dot notation (see figure 31).

No general recommendation can be made on the choice of whether to use an operator or a method. If an object-oriented
style were preferred, methods would probably be used, whereas for a more functional style operators would probably be
used. In most cases a mixture of operators and methods could be used.

An operator may be thought most appropriate if the operation just uses values (all the parameters are IN parameters) to
determine the result. An operator can be defined in any appropriate data type.

A method may be thought most appropriate if the main purpose of the operation isto change the contents of a variable
that it is applied to.

One of the simplest but most effective uses of operationsis to improve the readability of expressions that contain data
elements that need to be extracted from a complex data type. For example, consider the extraction of an OPTIONAL
item of afield of a CHOICE datatype, defined in ASN.1 as:

UnitData ::= CHO CE
{ callInfo Cal | Dat a,
packet | nfo Packet Dat a

}
Cal | Data ::= SEQUENCE
{ cal lingParty Part yAddr ess,
cal | i ngSubaddr ess Part ySubAddr ess OPTI ONAL,
cal l edParty Par t yAddr ess,

cal | edSubaddr ess Par t ySubAddr ess OPTI ONAL
}

An assignment of the sub-address of avariable unitdata of this data type structure may look like this:

t heSubAdd : =
I F cal | I nfoPresent (unitdata)
THEN | F cal | edSubAddr essPresent (uni tdata. cal | | nfo)
THEN uni tdat a. cal | i nfo. cal | edSubAddr ess
ELSE noSubAddress FI
ELSE noSubAddress Fl;

Aswell as being long to write, the statement also shows in detail how the element is accessed and the handling of a
missing sub-address which is probably not relevant in the context of the function of the process.

The example in figure 28 shows how an operator can be added to an inherited ASN.1 complex data type to perform the
necessary extraction of the data element.

NOTE: Although most data types are specified in protocol standards using the ASN.1 notation defined in ITU-T
Recommendation X.680 [8], operations can only be added in an SDL data type definition.

ETSI

42 ETSI EG 202 106 V2.1.1 (2003-11)

USE
ExampleASN1;

PACKAGE DataExample _ _ N1(D)
VALUE TYPE UnitDataType INHERITS UnitData

ADDING
OPERATORS
called_subaddress_from (IN UnitData_Type) -> PartySubAddress;
OPERATOR called_subaddress_from;
(data UnitData_Type) -> PartySubAddress;
{ IF callinfoPresent(data) = false THEN
RETURN noSubAddress;
IF calledSubAddressPresent(data.calllnfo) = false
RETURN noSubAddress;
RETURN calledSubAddressPresent(data.calllnfo);

}
ENDVALUE TYPE UnitDataType;

Figure 28: SDL package where new data type containing an operation is specified

An operation is defined as part of the data type to which it belongs and has interface and body specifications similar to
those defined for procedures. There is also a signature specification that introduces the operation name and specifies the
types of parametersthat it receives and returns.

Having defined the operator, the assignment statement can now be re-expressed as:

t heSubAdd : = cal | ed_subaddress_from(unitdata)

This assignment is shorter than the original, and it now shows the most useful information of what is extracted and
where it originates.

(49The textual syntax of SDL can be used to define simple operations such as the one shown in figure 28. More

(50)complex operations should be specified as operator or method diagrams which are referenced from the relevant
data type specification.

An exampl e of where an operation could be very useful isin the management of acircular counter that is permitted to
have only arestricted range of values. Each time the value of the counter isincremented, there needsto be a check to
determine whether the upper limit has been reached and, if so, counting needs to be restarted from the lowest allowed
value. Instead of specifying it repeatedly in process diagrams, an operation can be used for this purpose. Figure 29
shows the necessary data type specification and includes the operator diagram reference. Figure 30 shows the operator
diagram itself.

BLOCK BlockWithMethod VALUE TYPE Counter 11020 N 2(2)

INHERITS INTEGER
ADDING
METHODS
incr -> Counter_1t020;
METHOD incr-> Counter_1t020 REFERENCED;
CONSTANTS 1:max20;
ENDVALUE TYPE Counter_1t020;

SYNONYM max20 Counter_1t020 = 20;

Figure 29: Data type containing the sighature specification of a method

ETSI

43 ETSI EG 202 106 V2.1.1 (2003-11)

METHOD incr

the use of a digram - it would be simpler as

1(1
/* A method this simple, does not really justify, ()
text in the data type. */

-> Counter_1to020;

ywhich the method is applied
max20 ELSE T

THIS:=

THIS:=1 THIS+1

THIS

Figure 30: Method diagram

The method defined in figure 30 can usefully be applied to avariable in aloop as given in figure 31.

PROCEDURE DotNotationExample 1(D

DCL i Counter_ltozo;%

freecircuit

@)

method incr
applied to L—
i with dot
notation

Figure 31: Application of method from figure 30 with the dot notation

Figure 32 shows how operators can be used to achieve the same effect as the procedure call shown in figure 20. Three
operators are used to extract status, error cause and destination address information from the Setup_Result parameter of
the CONNECTED message. The intermediate Analyse |nput step is removed and, by choosing names for the operators
carefully (Status_from, Cause_from, and Destination_from), the readability of the SDL isimproved.

ETSI

44

ETSI EG 202 106 V2.1.1 (2003-11)

PROCESS Example_Operatoruse

wait_For_
_Connected

CONNECTED
(Setup_
Result)

NFROM calleduser

StatusFrom

(SetupResult)

2(3)

Failure
success
success. (DestinationFrom Failure_ (CauseFrom
Response (Ssetupresult)) Response (Setupresult))
—Resp VIA UserLink -Resp VIA userLink
Connected Idle

Figure 32: Examples of operator invocation

The operator signature specification, with references to appropriate operator diagrams, for the above example is shown
in figure 33. The operator diagram for CauseFrom is shown as an example in figure 34.

BLOCK exWwithOperators

1(4)

NEWYPE Setup_Resul t _Type

CPERATORS
Stat us_from
Dest inati on_from
Cause_from

OPERAT(R S at us_from

OPERATCR Desti nation_from
OPERATCR Cause_from

ENDNEW YPE Set up_Resul t _Type;

REFERENCED
REFERENCED
REFERENCED

/* only parts rel ated to operator definition are shown */

Set up_Resul _Type ->
Set up_Resul _Type ->
Set up_Resul _Type ->

S at usType;
Dest i nati onType;
CGauseType;

Figure 33: Example of data type definition containing operator signature specification

ETSI

45 ETSI EG 202 106 V2.1.1 (2003-11)

OPERATOR CauseFrom 1(D

(IN Conn SetupResultType) —> Cause CauseType;

DCL
ErCuse ConnE ror Type; Operator specifying in detail
- - the_derivation of connection
failure cause

ErrCause :=
Conn! ErrorCause

ErrCause

UserNotKnown NoRouteToUser Incompatible_ NONWRe sponse
Services

Cause := cause := Cause := Gause :=
Network_

Network_
UserError UserError Error

Error

Figure 34: Example of detailed operator diagram

8.3 Using macros

SDL provides afacility for specifying behavioural macros (i.e. a shorthand notation for functions which are repeated at
several points within a specification). Macros may only be specified in atextual form and can be dangerous constructs
which, if not used with extreme care, are likely to make a specification difficult to interpret and understand, particularly
where the macro specifies a complex function. Thus, ®Dthe use of macros should be limited to those cases where the
macro can be contained within one printed page.

Thereis one particular circumstance where macros can be used to add clarity and readability to a standard. In most
protocol standards, SDL timers are controlled using the informal terms such as " Start Tn" and " Stop Tn". Unfortunately,
SDL usesthe keyword SET to start atimer and RESET to stop it. To avoid the use of SET and RESET (which is often
misinterpreted to mean "re-start the timer") it is possible to define two macros for this purpose. SDL already uses the
keywords START and STOP and so, in figure 35 the macros have been named Start. Timer and Stop_Timer.

PACKAGE Timer_Start_and_Stop 1(1)

MACRODEFINITION Start_Timer (theTimer); k
SET (theTimer);
ENDMACRO Start_Timer;

MACRODEFINITION Stop_Timer (theTimer); k
RESET (theTimer);
ENDMACRO Stop_Timer;

Figure 35: Macro definitions for starting and stopping a timer

ETSI

46

ETSI EG 202 106 V2.1.1 (2003-11)

The examplein figure 36 shows how these macros can be used in practice. Note that the expiry of atimer in SDL is
shown as an INPUT symbol simply containing the identifier of the timer. In this example, the word "Expiry" has been

added as a comment for clarification.

PROCESS Dialling

TIMER T300 : = 300*”56%

Setup(2)

Get_Setup_Parameters

call_
Request

From User
(Destinatio

Get_Setup_
_Parameters

(Desination,
Params)

SETUP
(Params)

VIA NetworkLink

Start_Timer
(T300)

—— Macro call

waitFor_
call_
Proceeding

—

CALL_
PROCEEDING

From Network

T300
/*Expiry*/

Stop_Timer

(T300)

Macro Call k

waitFor_
Connection

Ca]]Fai]ur§:>»{VIA UserLink

1dle

Figure 36: Process illustrating the use of macros

9 Using decisions

Conditional and optional requirements expressed in the textual version of a standard can often be represented in SDL as
decisions or options. Decisions are used when the behaviour depends on current values of variable or expressions

(see clause 9.1). Options are used when the behaviour is fixed by the implementation (or non-implementation) of
optional requirements (see clause 9.2). Additionally, SDL agorithmic expressions permit the use of arange of
conditional and looping statements for the control of textually-expressed behaviour (see clause 9.3).

ETSI

47 ETSI EG 202 106 V2.1.1 (2003-11)

9.1 Decisions

A decision symbol may contain:
. informal text;
. an expression that evaluates to avalue of a certain data type, for example:
- avariable;
- aprocedure cal;
- an operator or method application.
The use of informal text in decisionsis described in clause 9.1.3. The remaining cases have the following in common:

- the data type of the expression contained in the decision precisely determines the range of values that are
acceptable;

- each branch that follows a decision begins with the specification of an answer that determines the range of
values for which that particular branch is to be taken. Such values can only be static and, thus, are not
permitted to contain expressions that depend on variables or procedure calls.

(2)1t is essential that the complete range of values of the data type contained in the decision is covered by ranges of
valuesin the answers without any overlap. In thisway it is possible to ensure that a unique execution branch is
available for all possible results of a decision. The following errors can occur in the specification of a decision and
should be avoided:

- part of the range is not covered by an appropriate answer. This means that there is no path through the decision
for such values and so further behaviour is unspecified;

- the ranges of one or more answers overlap. In this case, more than one branch can be taken for a particular
value and this would lead to is ambiguity;

- the range of values specified in the answers islarger than the range of values of the data type contained in the
decision. As aresult, some branches may never be executed. Thisislikely to be confusing and would hamper
readability.

9.1.1 Naming of identifiers used with decisions

Sensible use of identifiers should ensure that a decision has a clear correspondence to the various alternatives expressed
in the text. In addition to following the naming conventions expressed in clause 5 3)identifiers used in decisions
should clearly reflect to a reader the " question” and " answer" nature of the conditions being expressed.

9.1.2 Using decisions to structure a specification

Decisions can be used effectively to divide a specification into separate parts, each dealing with a particular aspect of
behaviour. For example, it is quite effective to use a decision to segregate the normal expected behaviour from the
exceptional behaviour. This approach can improve the readability of a standard and isillustrated further in clause 7.5.3.

It is sometimes the case that a standard needs to specify a complex decision tree based on a number of different
parameters. An example of this might be the determination of an error cause based on a message received and the status
of someinternal dataitems. In most cases, particularly where the decision processis considered to be normative, it is
not possible to simplify the presentation of the decision process by using alternative SDL constructs without losing
clarity. Summarizing the decisions in atable before attempting to write the SDL can be helpful. Each decision should
then be specified explicitly in the SDL and not hidden in a procedure or operator.

9.1.3 Use of text strings in decisions
The simplest way of expressing the basis of adecision isto use informal text. This method is often chosen by specifiers

for its readability. However, it is proneto errors asit gives no precisely defined relationship between the range of values
acceptable in adecision and the range of values expressed in the answers.

ETSI

48 ETSI EG 202 106 V2.1.1 (2003-11)

In the example shown in figure 37, the implication is that the question is of a binary nature. Unfortunately, as that is not
specified explicitly, other values, such as 'Minor error’, could exist as part of the range results. The reader cannot be
hel ped by automatic tools which are unable to detect such problems.

'CRC_Error?,

'ErrorDetected' 'NoErrorDetected'

Figure 37: Use of informal text in a decision

NOTE: Inasimulation environment the user would be prompted at run-time to choose a particular outcome.
While this allows flexibility, it can make simulation cumbersome by requiring excessive interactive input.

As more possible outcomes are included in a decision expressed using informal text, there is an increased likelihood of
an ambiguous interpretation of the result which automatic tools would be unable to resolve. Thus, ®4the use of
informal text in decision statements should be limited, preferably to those cases where the decision is obviously
binary in nature.

It iscommon in SDL specifications to omit the quotes (* ") around the text string. Thisis syntactically incorrect as the
guotes should always be present.

9.1.4 Use of enumerated types in decisions

The use of enumerated types resultsin a style which is similar in appearance to the example in figure 37 but which has
the additional and important benefit that a relationship between the question and answersis explicitly and precisely
defined. The reader is made aware that there are no more than two possible outcomes. Furthermore, atool can check
that:

- the contents of the decision symbol and the outcomes are compatible;
- the value expressed for each outcome is within the enumerated range;

- that all itemsin the enumeration have a possible outcome.

ASN. 1 specified in a separate nodul e

Error Codes ::= ENUVERATED
{ FErrorDetected,
NoEr ror Det ected }

DCL
CRC Error ErrorCodes;

ErrorDetected NoErrorDetected

Figure 38: Use of enumerated types in a decision

NOTE: Inthisexample asimulator would take one branch or the other depending on the actual value of
CRC_Error.

ETSI

49 ETSI EG 202 106 V2.1.1 (2003-11)

While this approach requires slightly more effort to declare the enumerated types and the associated variables, it
produces a specification which is far less prone to error and aids understanding by allowing the grouping of related
components such as error codes, service options and status values. (551n most cases, enumerated types rather than text
strings should be used to express decisions.

914.1 Use of ELSE

The use of the SDL built-in value EL SE is useful in completing ranges of outcomes. In the example shown in figure 39,
separate branches are specified for 7 200 bps, 9 600 bps and 14 400 bp while 28 800 bps and 33 600 bps are both
covered by the EL SE.

ASN. 1 specified in a separate nodul e

Bi t Rates ::= ENUMERATED
{ 7200bps,
9600bps,
14400bps,
28800bps, DCL
33600bps } Avai |l abl eBitRate BitRates;
Available_
BitRate
7200bps 9600bps 14400bps ELSE

Figure 39: Use of ELSE in a decision

Note that a precise interpretation of the ELSE construct is only possible if the range of valuesin a decision is defined by
adatatype (be it enumerated or any other type).

(S6)EL SE should be used as a decision outcome value to distinguish between one or more specific outcomes and all
other possibilities.

9.1.5 Using SYNTYPES to limit the range of values in decisions

It is often necessary to limit the range of values a particular data type can have. Thisis especially important in decisions
where ELSE is used since it limits the range of values that lead to an EL SE branch. In most cases, the SDL concept of
SYNTYPE or the ASN.1 constraint can be used to define atype that is basically the same as an existing type but which
has alimited range. In the following ASN.1 and SDL examples, the type 'Digit' has al properties of 'Integer’ but cannot
take valuesthat are less than zero or greater than 9.

ASN.1

Digit ::= I NTEGER(O..9)
SDL

SYNTYPE Digit = Integer CONSTANTS (0..9);
Thus, G)ASN.1 constraint or SDL SYNTYPE constructs should be used to limit the range of values represented by
an ELSE branch in a decision.

9.1.6 Use of symbolic names in decision outcomes

In many cases the content of the decision will be a boolean data type, which means that the values of true and false
should be given in answers. G8SDL SYNONYMs should be used to define meaningful alternatives to the Boolean
values of true and falseif this aids clarity. Figure 40 shows examples of the specification of Boolean SYNONY Ms.

ETSI

50

ETSI EG 202 106 V2.1.1 (2003-11)

SYNONYM Yes Bool ean = true;
SYNONYM No Bool ean = fal se;
NotAvailable .
SYNONYM Avai | abl e Bool ean = true;
SYNONYM Not Avai | abl e Bool ean = fal se;
Available SYNONYM Success Bool ean = true;
SYNONYM Fai lure Bool ean = fal se;
DCL |: ~
Nunber Pr esent Bool ean,
I nput Dat a Bool ean,
Updat eDB Bool ean;
Failure UpdateDB

Figure 40: Examples of the specification and use of SYNONYMs with decisions

9.1.7 Use of range expressions in decisions

In some cases, as shown in figure 41, it is more meaningful to use comparisonsto identify the possible outcomes from a

decision.

<10 =10

>10

Figure 41: Use of range expressions in a decision

Although this explicit expression of outcome values is unambiguous, it lacks resilience to change. For example, if the
value '10" was the maximum value that Ack_Counter should reach and it is used in numerous decisions throughout the
specification, it would be very time-consuming to modify al relevant instances of 10 in the event that the requirement
for the maximum value of Ack_Counter changes. For the purposes of flexibility and as described in clause 6.2.3.6,
symbolic names rather than explicit values should be used to express decision outcome conditions. This approach is

shown in figure 42.

ETSI

51 ETSI EG 202 106 V2.1.1 (2003-11)

ASN. 1 specified in a separate nodul e

maxAckCount Count Type ::= 10

Ack_Counter

<maxAckCount =maxAckCount >maxAckCount

Figure 42: Use of symbolic names rather than explicit values

9.1.8 Use of Procedures in Decisions

It is possible to use procedures in conjunction with decisions both to simplify the SDL and to improve its syntax
without impairing its readability. As an example, the informal description shown in figure 43 could be re-written in

three ways using a procedure with the decision.

'‘Get User Name
From Database
Using User Number'

‘Name
Valid?'

'No'

Figure 43: Informal task and decision

NOTE: Thetextin each of the boxesin figure 43 is shown in single quotes. These have often been omitted in
SDL diagrams within standards. Thisisillegal rather than informal SDL.

Thefirst aternative isto call avalue procedure directly from the decision, asin figure 44. The procedure UserName
extracts from the database the user's name associated with UserNo.

ETSI

52 ETSI EG 202 106 V2.1.1 (2003-11)

ASN. 1 specified in a separate nodul e

bl ank | A5String ::="" DCL
UserNo PartyNunber;

UserNameFromDatabase

UserNameFrom™
Database
(UserNo)

ELSE

Figure 44: Procedure called from within a decision

The advantages of this method are that it is concise and, in many cases, highlights only those aspects of the
specification that are important to the standard.

It may be considered to be a disadvantage of this approach that in some instances it is too concise and hides normative
reguirements in the procedure.

The second aternative is to assign the result of the value procedure to a variable before making the decision based on
the contents of the variable as shown in figure 45.

E bl ank I A5String ::=""

DCL
Name = Nane | A5String,
UserNameFrom_ User No PartyNunber ;
Database (UserNo)
UserNameFromDatabase

blank ELSE

Figure 45: Decision based on a variable assignhed from a value procedure

The advantage of this method is that it can make clearer the individual stepsinvolved.

The disadvantages are that an additional variable (Name) needs be specified and the assignment statement is less
descriptive than the informal text.

In figure 44 and figure 45 the use of a procedure could equally well be replaced by an operator or method application.
Further details on the use of procedures, operators and methods can be found in clause 8.

ETSI

53 ETSI EG 202 106 V2.1.1 (2003-11)

Thefinal alternative isto call a procedure which returns avalue as a parameter which is then used as the basis for the
subsequent decision, as shown in figure 46.

ASN. 1 specified in a separate nodul e

blank | A5String ::=""

DCL

Get_UserName Nane | A5String
_From_DataBase UserNo PartyNunber;
(UserNo, Name)

L Get_UserName_From_Database

blank ELSE

Figure 46: Decision based on a parameter returned from a procedure

The main advantage of this approach isthat by careful choice of the name of the procedure, the SDL can be quite easy
to read and understand.

The disadvantages are the same as those for the second alternative with the additional factor that returning the decision
variablein a parameter can mask errorsin the specification. As an example, if the procedure Get_UserName_From DB
did not determine and return a value in the Name parameter, this may not be detected by automatic tools and the
decision would be based on whatever value had previously been assigned to Name.

All of the three alternatives above are valid methods and it is a matter for the rapporteur to decide which is the most

appropriate on a case-by-case basis. Whichever one is selected, ®9procedure calls should be used in conjunction with
decisionsto eliminate the use of informal text.

9.1.9 Use of ANY in decisions

For validation purposes, it may be necessary to re-specify decisions using the non-deterministic ANY expression.
However 69the ANY expression should not appear in the SDL specificationsin standards except whereit is
included to show the behaviour of an entity (such asa user) that is not the subject of the standard.

9.2 Use of options rather than decisions

The dynamic nature of decisionsis not well suited to the expression of the implementation options which are often to be
found in protocol standards. Fortunately, SDL includes a symbol (see figure 47) specifically for this purpose. The
processing path through this symbol is evaluated at system generation time based on the static value provided for the
optional item. This path isthen fixed until the system is re-generated with a different value of the optional item.

(61)Where mutually exclusive implementation options are to be expressed, the option symbol should be used rather
than a decision.

The most effective way of labelling the paths leading from an option symbol is to define appropriate synonyms.

ETSI

54 ETSI EG 202 106 V2.1.1 (2003-11)

SYNONYM | npl enent ed Bool ean = true;
SYNONYM Not | npl enent ed Bool ean = fal se;

SYNONYM Ml ti pl exi ngCapability

Bool ean = I nplenented /* or Notlnplenented */;
ultiplexing™
Capability

Implemented Notimplemented

Figure 47: Use of SYNONYMs with options

NOTE: A practical problem can occur with a specification model that has many options and which is to be used
for validation purposes. In such cases the 'hardwired' nature of SDL options makes this cumbersome as
each new combination will require a new compilation of the executable model. Decisions together with
some form of parameterization would provide a more flexible approach.

9.3 Flow control statements

There are some specification tasks for which the SDL graphical symbols are not ideally suited. One example of such a
task is the calculation of the polynomials required by authentication procedures. For these casesit is possible to use
SDL agorithmic expressions which are based on a structured textual language. Within this language there are a number
of flow control statements, thus:

- IF statement
equivalent to an "IF...THEN...ELSE" construct;
- DECISION statement
equivalent to a"CASE" construct;
- LOOP and CONTINUE statements
equivalent to a"WHILE" construct but can also beuse asa"FOR....STEP....NEXT";
- "BREAK" and "LABEL" statements
equivalent to a"GOTO label" statement.

These statements are very powerful but, for obvious reasons, lack the clear presentation of the graphical form. However,
they are generally more compact and easier to interpret in the specification of either very simple tasks or more complex
agorithmic computations. (62SDL algorithmic flow control expressions should be restricted to situations where the
required behaviour involves only the processing of data but not the sending of signals and not the control of timers.
When there is a good reason for using them, the clarity of a specification can be improved by defining algorithmic
expressions in procedures with meaningful names indicating the function(s) performed by them (see clause 8).

Figure 48 shows an extract of an SDL process diagram which takes a value received in the UserQoSRequest signal and
callsthe Determine_RValue procedure to obtain values of Requested Rval and Availability Type. The text procedure
specification in figure 49 extracts QoS_Class from the IN parameter and uses that as the control variable in a decision
statement which assigns valuesto RvalReq and Av_Type.

ETSI

55 ETSI EG 202 106 V2.1.1 (2003-11)

PROCESS FE1

Idle

——

2(3)

User_
QoSRequest
(R_Request)

From Calling User

Determine_
_Rvalue

(R_Request, Requested_Rval,
Availability_Type)

Guaranteed

Nomal_
Behaviour

AvailabiTlity_

Type

NotGuaranteed

Exceptional_
Behaviour

Figure 48: SDL calling an algorithmic expression in a procedure

(IN RegR
aut Rval Req
(e8]} Av_type

{ DCL
QS _d ass

DECI SI ON (QoS_
{ (best)
(hi gh)
(medi um
(Accept a
(best _ef
(user_de
RET}URN;

PROCEDURE Det er m ne_Rval ue

gosd ass,
rval ,

gosAvail ability)

cl assNo;

C ass)

bl e)

{

{

f

{
fort) {
{

fined)

QS dass := dassNunmber _From RegR) ;

Rval Req : = 200;

Av_Type : = guaranteed; }
Rval Req : = 80;

Av_Type := guaranteed; }
Rval Req : = 70;

Av_Type := guaranteed; }
Rval Req : = 50;

Av_Type := guaranteed; }
Rval Req : = 50;

Av_Type : = not_guarant eed; }
Rval Req : = MaxR_Fron{ R _Req);
Av_Type := guaranteed; }

Figure 49: Text procedure using DECISION statement

ETSI

56 ETSI EG 202 106 V2.1.1 (2003-11)

10 System structure, communication and addressing

Although one of the principle aims when using SDL in a descriptive manner isto provide a readable specification that
concentrates on describing what the system is supposed to do (requirements) rather than on the detail of how the system
isto be implemented, SDL has some inherent structure. The simplest model needs to identify communication with the
environment, the pieces that make up the SDL and the addressing of communication. A useful technique for hiding
detail at various levels of complexity isthe layering of information (sometimes called data hiding) where pieces of the
SDL contain other pieces, the details of which are hidden from the highest level. An SDL system description therefore
defines the structure of the visible system pieces, and each of these in turn can contain structure and behaviour.

NOTE: The structure and readability of an SDL specification with respect to its graphical layout is considered in
clause 7.5 and the use of data for signalsin clause 11.

10.1 System structure

SDL allows the layered specification of systems such as protocols or servicesin a hierarchical manner through the use
of agents: system, blocks and processes. Usually the system and block agents define the static architecture of the system,
whereas process agents that are contained in ablock or system define its dynamic behaviour. Although a block can be
defined to have a state machine, if state machine descriptions are restricted to agents that are processes, the block and
process symbols then give a clear indication of which agents have their own behaviour and which do not. A very ssimple
system may consist of a system agent containing a single process.

The SDL system and block structuring give an unambiguous description of the system architecture. It isusual that
architectural aspects are described elsewhere in a standard (or even in other standards) often using non-SDL figures. If
this is the case then (63)the SDL version of the architecture of a protocol or service should be consistent with and
complementary to other (non-SDL) descriptive diagrams. Thisis particularly important in relation to naming, which
facilitates the easy identification of system components. In addition, (¢4 comments should be used to convey to the
reader the relationship of the SDL architectureto the relevant non-SDL parts of the standard. If the structure of the
systemis specified in SDL, informal drawings that duplicate structural information given by the SDL diagrams should
not be used. This may mean including SDL system diagrams in the parts of the document where structure and
architecture are discussed.

The mgjor advantage of SDL structure diagramsis that their meaning is well defined, so that the document does not rely
on intuitive understanding of an informal drawing or introduce an explanation of the notation used. Of course, many
issues (such as physical attributes of equipment) cannot be described in SDL, and other well-defined notations may also
be used.

An SDL specification isincompleteif it includes behaviour descriptionsin agent diagrams but does not include the
associated structure diagrams. For example, a system diagram containing agents and the channels connected to the
agents defines the structure of the system. Even in the case of asimple protocol or service, (69)the SDL specification
within a standard should comprise one system composed of at least one agent. Thisis not simply a case of 'getting the
SDL right' for the sake of it. The SDL architecture provides useful information for the reader such as what entities and
communication paths exist within the system. Thereis usually more than one connection with the environment and
different channels connected to the frame in the SY STEM diagram show this. The communication paths have an
important role in the addressing of messages from one behavioural part to another (66)SDL should be used to show the
structure of a system aswell asits behaviour.

NOTE: SDL block and process agents define the functional partitioning of the system. Using SDL does not imply
that areal system need implement a standard exactly as defined by the SDL, only that the implementation
should exhibit external behaviour over the normative interfaces that is equivalent to the behaviour defined
by the SDL model.

In acomplex standard it is possible that the SDL description only covers part of the system. It may also be necessary to
include sub-structuring that is only implied in the text but which is needed to give a coherent and complete SDL model.
It is not possible to give strict guidelines on how to structure a specification, as this will depend on the subject matter of
the standard. However, although the careful use of sub-structures can make a complex specification easier to
understand, the overuse of sub-structures can render them unreadable. (67)SDL sub-structuring should be used to
simplify complex SDL models but should not be used excessively.

ETSI

57 ETSI EG 202 106 V2.1.1 (2003-11)

10.2 Minimising the SDL model

The example in figure 50 shows a situation where there are alarge number of identical user terminals communicating
with one of several identical local concentrators, which are al connected to a single common network.

concentrator

concentrator

concentrator I

concentrator

Figure 50: A hypothetical network

Since the terminal s all have the same behaviour, it would be possible to describe the system by providing asingle
description for aterminal that isreplicated several times. Similarly the concentrators could be replicated and the
corresponding SDL model for an implementation might be as shown in figure 51. Note that figure 51 shows only the
first page of the system diagram and the interface definitions (for toUser, fromUser, toConc, fromConc, toNetwork and
fromNetwork) and synonym definitions (for NumberOf Terminals and NumberOf Concentrators) are defined on the
second page (not shown here). In general, while figure 51 is perfectly acceptable for the specification of an operational
system, it is unnecessarily complex for describing protocols and servicesin standards. What needs to be captured in a
standard is the minimum that implementations should conform to, and a standard needs to make clear the role of each

entity involved.

SYSTEM Networkimplementation 1(2)
Terminal TerminalType
[toUser | User (NumberOfTerminals)
- <4—» — fu :TerminalType
[fromUser | C—<4— | ConcentratorType
tc [fromConc]
fromConc
toConc
tt [fromNetwork]
—— ft Concentrator fn—<€—
[mCOnC] (NumberOfConcentrators)
:ConcentratorType fromNwW
tn
toNW
Network
[toNetwork }

Figure 51: An SDL system model appropriate for implementation of the network in figure 50

ETSI

58 ETSI EG 202 106 V2.1.1 (2003-11)

In the example, it would be sufficient to describe the protocol in terms of an origination terminal, a destination terminal,
an origination concentrator, a destination concentrator and the network as shown in figure 52. Each block represents a
particular role and the unnecessary complexity of multiple instances shown in figure 51 is removed-(68)Multiple
instances of SDL blocks and processes should be avoided if possible.

SYSTEM Protocoll 1(2)

UserA L Awire o
< Origination_ «— Origination_
to_
Orig_|
User

»

!

from_
Orig_
User

Terminal T Concentrator

from_
Orig_
Conc

to_
Orig_
Conc

A [OrigFromNWJ Fm——————-

Alink === mmmmm e 1 NORMATIVE
v [OrigTONW] _________

Network

A [DestTonw | pommemeee

Blink |[--------------- 1 NORMATIVE
4 [DestFromNW] _________

Destination_ Bwire Destination_ UserB

Concentrator < > Terminal < >

to_ from_ from_ to_
Dest_| |Dest_ Dest_ Dest_|
Conc | |Conc User User

Figure 52: A simplified SDL system model for the network in figure 50

Sometimes informative blocks and processes (such as OriginationTerminal and DestinationTerminal in figure 52) are
needed to aid the understanding of a standard, and to describe the behaviour of entities surrounding the functions that
are the subject of the standard. If the terminal and network behaviour is not needed for the concentrator-to-concentrator
example, an SDL system such as figure 53 with only the different end functions can be used. (691 nformative blocks or
processes that are not needed to aid understanding should be omitted, because such detail will obscure the minimum
requirements expressed by the standard.

SYSTEM ConcProtocol3 1(2)

Bwire

Origination_ Destination_

Concentrator

Concentrator | |
from_ to_ . . to_ from_
Orig_ | |Orig_ | { D?St_} { 0“9_} Dest_| | Dest_
Conc Conc 1| Orig Dest Conc | |Conc

Figure 53: A minimal SDL model for the concentrator protocol standard example (distinct ends)

Protocols can be modelled effectively by showing the functionality of the ends separately as shown in figure 53. This
has the advantage that the description can be simplified so that only the functionality essential to the protocol is defined.
It is assumed that in this case each concentrator is sufficiently simple that it can be modelled by just one process. It is
more likely that blocks with contained processes will be needed, as shown in subsequent diagrams. When a block
contains only one process, replacing the block by the contained process reduces the complexity of the SDL. A diagram
can contain both blocks and processes.

10.3 Avoiding repetition by using SDL types
In some specifications, there may be structure and behaviour that is replicated in more than one block or process. To

avoid repetition, (7Oif the same block or processisrequired at more than one place within an SDL specification, a
BLOCK TYPE or PROCESS TYPE should be defined from which instances can be derived.

ETSI

59 ETSI EG 202 106 V2.1.1 (2003-11)

10.3.1 Defining the same behaviour at both ends of a protocol

The use of SDL typesis particularly useful for standards that specify the behaviour of both ends (such as origination
and destination) of a protocol communication as a single, multi-purpose entity asin figure 54. With this approach, the
function of each end of the protocol is not so distinctly separated but actual functional behaviour is specified only once
(inthe BLOCK TY PE Concentrator in the example).

SYSTEM ConcProtocol4 1(2)
Concentrator
Awire Blink Bwire
< > t n < > n t < >
from o Origination_ :{TDegt__ } { TOrlijg_J Destination_ 50_t [‘;font“_
org_ | |org_ | | Concentrator | jL'°°"9] [ToPest Concentrator | |conc | | conc
Conc Conc : ! ! :
:Concentrator | _ ! NORMATIVE :Concentrator
1
Lo

Figure 54. A minimal SDL model for the example where the same function is used at each end

10.3.2 Static instances to represent repeated functionality

In some cases, a standard may suggest that process instances need to be dynamically created. Dynamic creation of
entities usually adds unnecessary complexity in the addressing of entities and should only be used in the (rare)
occasionsthat it is essential. If, for example, there is a multi-link concentrator standard, one origination concentrator
and two destination concentrators, as shown in figure 55, may be sufficient. In this case, it is appropriate to use the
BLOCK TY PE DestConc because the two destination concentrators have the same functionality. ("DWherever possible,
aminimal number of static instances should be used instead of dynamically created SDL processes.

SYSTEM MultiConcProtocol5 1(2)
DestConc
Awire Origination Blink Destination_ Bwire
g — ConcentratorB
< 'S Concentrator5 +— N .DestConc t < >
! . i to_ from_
from_ to_ Dest_ | | | Orig_ Dest_ Dest_
Orig_ Orig_ ToOrig | || ToDest po=-mmoooos Conc conc
Conc Conc e 4 NORMATIVE
[DestToOrig] R,
---------- - Clink P
Destination .
NORMATIVE b--=--- —
© : ConcentratorC ‘wae .
“““““ (o > N :DpestConc t ¢ >
OrigToDest J to_ from_
Dest_ Dest_
Conc Conc

Figure 55: Static SDL model for a multi-link scenario

ETSI

10.4

60 ETSI EG 202 106 V2.1.1 (2003-11)

Interfaces

An SDL interface is atype that defines a set of communication items (signal's, remote procedures and remote variables)
realised by an agent or at one gate of an agent. The interface name can be used wherever asigna list is required (for
example on a channel or in an input) and the communication items included in the interface are then used as the signal
list. In this respect an interface definition and a SIGNALLIST definition are equivalent.

All the communication items of an interface can be defined inside the interface definition as part of the interface. By
contrast, communication items used in asignallist have to be defined separately. An interface definition can therefore
more clearly identify and group together the relevant items.

It is preferable to use an interface definition rather than a signallist definition to give an identity to a set of
communication items (signals, remote procedures and remote variabl es).

Aninterface definition has additional properties compared with a signallist:

1)

2)

3)

An interface can inherit other interfaces (and unlike other typesin SDL can inherit more than one interface) for
example:

interface callHandling inherits setupPDUs, term nationPDUs;

In this case callHandling inherits all the items defined in setupPDUs as well as all those defined in
terminationPDUs. For any item, such as a SIGNAL named Setup, defined in setupPDUs thereisa
corresponding item defined in callHandling. The SIGNAL named Setup in callHandling is distinct from that
defined in setupPDUs and if necessary they can be distinguished by a qualifier asin:

<<| NTERFACE cal | Handl i ng>> Set up

By comparison when one signallist definition includes the name of another signallist definition as an element,
there is no re-definition of the included signal.

Every agent and agent type has an associated implicit interface (with the same name) that realizes the
communication items of the agent or agent type; that is, al signals, remotes procedures or remote variables
handled by the agent or agent type.

An interface definition name can be used to name a (uni-directional) gate, which defines that the gate has the
communication items of the interface asits signal list, for example asin figure 56 where DocService is used
for interface gate definitions.

INTERFACE DocService .
INHERITS Database Admin
<DocType, Docld>;

ADDING{SIGNAL Backup;}

DocService DocService
DocUserType > DocServerType

Figure 56: BLOCK TYPE using an interface realized by another BLOCK TYPE

NOTE 1: Any block type that inherits DocServerType also realizes the DocService interface.

NOTE 2: Agent typesthat are completely unrelated to DocServerType might also implement the DocService

interface.

ETSI

61 ETSI EG 202 106 V2.1.1 (2003-11)

—— »—— DocService Admin — ¢—

DocUser (2): [DocService] [Admin]

DocUserType MainServer:

DocServerType

AdminUser

>7

. 1 . Hi
[DocService] DocService Admin

BackupServer: [Admin]

DocServerType

Figure 57: BLOCKSs using interfaces realized by two other type-based BLOCKs

Because an interface gate has the name of the interface and the list of communication items of an interface can also be
denoted by the interface name, it is common for the same name to appear asasigna list on a channel and the gate at
receiving and of the channel. Figure 57 shows instance sets based in the types defined in figure 56. Unnamed channels
convey the signals of the interface DocService to gates that are also named DocService.

10.5 Diagrams showing relationships

For more complex systems it may be useful to include a specification area diagram to give an overview of what is
included in the system. (72A specification area diagram (if used) should include the most important packages shown
as reference symbols with dependency shown on the diagram. For example the DocSys depends on the packages
DocPack and ServPack, which both depend on FilePack. The diagram shows what packages are needed in addition to
the system DocSys. If any of the packages is defined in another document, this can be shown by annotation or by the
name of the package.

—
FilePack
71 N
] / _|\\
DocPack ServPack
N N
SYSTEM
DocSys

Figure 58: A specification area diagram giving an overview of packages included in a system

Types used within the system are either defined within a package or within an agent diagram of the system and the
relationships between types can be shown in these diagrams together with package dependency of types.

The partitioned symbol shown in figure 59 is used to refer to aclassin UML or atypein SDL. In the following the
UML terminology "class symbol" is used. The class symbolsinclude a partial (possibly empty) specification of attribute
and behaviour properties that must be consistent with the full specification given where the entity is defined.

Class symbols for types defined in different scopes can be collected together on the same diagram, so that a model
showing rel ationships between the types can be drawn.

NOTE: class symbolsthat reference non-local types have no impact on the meaning of the SDL, so can be
included or omitted as needed. A non-local reference is by a qualified identifier rather than a name.

ETSI

62 ETSI EG 202 106 V2.1.1 (2003-11)

«BLOCK» type reference heading
Concentrator
Concld; attribute properties area
setupreq; behaviour properties area
releasereq;

Figure 59: Partitioned "class" symbol - used to refer to an SDL type

10.5.1 Use of associations between class symbols

Associations can show relationships between class symbols items. Inheritance, dependency, and context
parameterisation can also be shown. Typically an association that is not inheritance or dependency is realised by
communication between interfaces. For example, in figure 60 the subscription association could be realised by the
blocks communicating using the Calling and Called interfaces, though this does not have to be the case.

«BLOCK» « BLOCK »

Usertype N Nettype
yp subscription P

Figure 60: A named association between two block types

Associations need not be related to any direct interface connection between the types, asillustrated by figure 61 where
there is arelationship between definitions based on the Usertype and definitions based on the Managetype.

«BLOCK»
Nodetype

I I

<<BLOCK>; client manager <.< BLOCK »
Usertype I:mgtmax = 1 Managetype
grouping

Figure 61: Class symbols with inheritance and a named association

Class symbols are always references to a more compl ete definition that is given elsewhere. There can be one or more
class symbols for the same type and the amount of detail about the type can differ in each case. This avoids the problem
of trying to show everything about a type in a unique class symbol for the type. Figure 60, figure 61, figure 62 and
figure 63, could all be part of one SDL diagram, though it is most likely that each would be on a different page because

they cover different issues.

NOTE: The arrowheads on associations are open, compared with filled arrowheads on gates and channels.

ETSI

10.5.1.1

63

ETSI EG 202 106 V2.1.1 (2003-11)

Use of a class symbol for an INTERFACE definition

«INTERFACE»
Calling

«INTERFACE»
Called

«INTERFACE»
Mgtlf

USE Answer;

USE manage(sub);

USE Setup(Setuptype);
Clear;

Clear;

Figure 62: References for interfaces

Although the properties of an interface can be shown in aclass symbol asin figure 62, there still needs to be a separate
definition of the interface in a text symbol. The class symbol and the corresponding definition must be consistent. The
class symbol for an interface can be used to highlight the most important items of the interface, and enabl es associations
of the interface with types to be shown graphically (see 10.5.1).

Class symbolsin diagrams could be used to show interfaces graphically together with the agent types that can
communicate by the interfaces. The interfaces may be shown as interface gates such as Called, Calling and Mgtlf on
Nettype in figure 63. The symbolsin figure 62 and those in figure 63 could be conveniently placed on the same page of
adiagram.

Calling Calling
«BLOCK» I I «BLOCK» Mgtlf Mgtlf «BLOCK»
Usertype ¢ Nettype <«— <« Managetype
Called Called

Figure 63: Interface gates using the interfaces referenced in figure 62

10.6 Structure diagrams using interfaces between agents

As can be seen above, class symbols can be used in SDL diagramsin asimilar way to UML class diagrams. One of the
major differences between SDL diagrams and UML class diagrams is the definition of a structure in atype. The
structure shows the communication paths between agent definitions in the type and bounds on the number of instances.
The structure defined in atype is used in definitions based on the type and in sub-types. In figure 64 the types from the
class symbolsin figure 60, figure 61, figure 62 and figure 63 are used for the type based block definitions. A channel
has been drawn between User and Net to define the communication link instances. This channel is connected to the
outgoing interface gate Calling and to the incoming interface gate Called in User. Similarly the channel is connected to
the interface gates Called and Calling in Net. The signals conveyed by the channel are shown by the use of the interface
names Calling and Called associated with the arrowheads of the channel, though these could have been omitted because
they can be derived from the channel connections (as has been shown for the unnamed channel for the interface Mgtlf).

BLOCK TYPE domain

User(2:max) Net(1,1)
:Usertype ‘Nettype
P [Called] [Calling] P Mgtif
Calling, ¢ p Called, Matlf
Called| subscriberLink | €alling

Figure 64: A type containing structure with instances of other types

ETSI

64 ETSI EG 202 106 V2.1.1 (2003-11)

10.7 Communication and Addressing

Using signals on channels effects communication between (block and process) agentsin an SDL system and with the
environment. A signal is conveyed from the connection at one end of the channel to the connection at the other end,
where the signal is either delivered to another channel or to the state In simple models, there will only be one agent
instance or connection with the environment that a particular signal can reach from the state machine that outputs it, and
no further addressing is needed. Similarly, in simple systems for a particular signal arriving from the environment on a
channel there will just one agent instance that can consume the signal.

At least one channel should represent the normative interface(s) of the system being specified and ("3all normative
channels (interfaces) should be clearly marked as being normative (using a comments box), with the assumption that
channels not marked as normative are informative and that they have been introduced into the SDL for clarity and
completeness only.

SDL processes are concurrent (usually - but see clause 10.9.1), so it is possible that signals from different processes on
the same communication path could be interleaved. If there are two different paths from a sending processto a
receiving process, it is possible for messages to arrive in a different order from the order in which they were sent. To
avoid this, ("there should be no more than one communication path specified in each direction between one entity
and another. This makes the communication clearer, and also avoids the possibility of asignal sent on one path
overtaking a signal sent on another path.

Although SDL supports other forms of communication (remote procedures, import/export and shared data - see
clause 10.9.2), it is better to use these only in exceptional cases, for example using remote procedures may reduce
complex internal signal interchanges. These constructsimply that the calling process waits and passes control to the
called process. Such a mechanism cannot be supported easily across a normative interface. (79)Remote procedures,
import/export, or shared data should not be used to exchange information between blocks and processes.

10.7.1 Use of interface and SIGNALLIST definitions

Usually there are too many signal names for them all to be listed with a channel or gate, and as well as grouping related
signals together in an interface definition (see clause 10.4), the interface name can be used to represent the list of signals
in several places. For example, in figure 55 the list OrigToDest is used twice. This can be defined at the system level as:

| NTERFACE OrigToDest {
SI GNAL Set upReq(Set upType),
Rel easeReq(Rel easeType),
Dat aReq (Dat al nfo);
USE | NTERFACE Fai | ures; }

where Failuresis another interface name. The optional interface keyword before the name clearly identifies that Failures
isan interface and not a signal, procedure or remote variable. A signal list definition could be used instead to define
such alist, but without the advantages of an interface definition. For example:

SI GNAL Set upReq(Set upType),
Rel easeReq(Rel easeType),
Dat aReq (Dat al nfo);
/* Note: thses SIGNAL definitions could be separate fromthe S| GNALLI ST */
SI GNALLI ST Ori gToDest = SetupReq,
Rel easeReq,
Dat aReq,
(failures);

where failuresis another signal list - denoted by the parentheses around the name.

To aid readability the number of signal list items on a gate or channel should be minimised. ("6)A small number of
interface names (preferably one) should be used to identify the signals on a particular channel or gate rather than
listing al signals explicitly. The keyword interface before the interface name would usually be omitted for reasons of
economy of space on the diagram. A list of signal names could be used if there are only one or two signalsto list.

Communication paths show the links between sending and receiving entities. Thelist of signals conveyed in each
direction is associated with the direction arrow on the path. These lists are optional if they can be derived from other
information but, for clarity, (77)all channels and gates should be shown with the associated interface names, signal
list names or signals. This provides the information where the reader needsit.

ETSI

65 ETSI EG 202 106 V2.1.1 (2003-11)

10.7.2 Indicating the use of signals in inputs and outputs

A signal instance sent directly from one SDL agent to another will have the same name at both ends of the
communication. To indicate the different use of signalsin inputs and outputs (for example a Setup considered as a
request at the sending side, and as an indication at the receiving side), the following approaches may be used:

1) giving the signal acomposite name (for example, SetupReqlnd, SetupRespConf);

2) acontext dependent suffix attached to the signal name as a comment (see figure 65).

DMode/*ind*/

Figure 65: A comment used as a signal name suffix

10.7.3 Directing messages to the right process

SDL allows the specification of a communication path or recipient agent to be part of an output. Although thereis often
no ambiguity asthe signal can only take one path to one consuming agent, adding thisinformation can make it easier to
understand the system (see examplesin figure 66). The TO construct can also be used in some cases to identify an agent
but, in the example, a comment has been used to clarify that route Clink is connected to a concentrator. The TO
construct cannot be used in this particular case because neither is the Pid value known, nor is the process name visible.
When there is more than one possible recipient of an output, TO or VIA will be used in order to be unambiguous.
(78TO or VIA should be used in an output symbol to indicate the recipient clearly if thisis not obvious from the
structure of the SDL system.

When a process sends asignal that it can also receive as an input, it is essential to use TO or VIA to avoid the
possibility (unlessintentional) that the sending process receives the signal. This situation is common for signalsthat are
"passed on" to another process.

AudioMode I to the Setuplnd
VIA Clink ~71 concentrator (srt) P TO CallAgent
| process

Figure 66: Examples of the use of TO and VIA

SDL aso provides a method for directing reply signals using the TO construct and the Pid value of the sender. If the
reply is generated before any other signal is received, TO SENDER can be attached to the output statement. If,
however, the reply has to be sent after receiving subsequent signals, then the SENDER value needs to be stored in a
variable so that it can be used later in an output. It is always safer to use this approach rather than TO SENDER because
some SDL constructs (such as remote procedures) implicitly change the SENDER value. Thusfor figure 55, an
origination concentrator can reply to either of the destination concentrators by an output such asin figure 67. For the
output Release to destConcPid to be valid, DestConc has to be the name of an interface, process or process type that
handles the Release signal.

ETSI

66 ETSI EG 202 106 V2.1.1 (2003-11)

Release /*DestConc is the name of the
process type for concentrators*/

DCL destConcPid DestConc; %

Release
TO destConcPid

destConcPid
:=SENDER

Figure 67: Replying to a sender

Where communication is with the environment, any differentiation between entitiesin the environment should be
handled by the identity or content of signals, or the identity of channels, rather than use of the TO mechanism.
Interfaces can be defined that correspond to entities in the environment and would be used on the channels leading to
the environment.

10.7.4 Differentiating messages

The only way that one message can be distinguished from another before it is received in an input is by its signal name.
It is not possible to selectively receive a signal according to its content or the sender or the communication path. When
aprocess reaches a state waiting for a stimulus (asignal or timer), those stimuli that can trigger a transition and those
which are saved are distinguished by name only.

NOTE: If aspecific signal can be received from several processes, it is not possible to selectively receiveit from
one source. The sending process identity can be determined by examining the SENDER value, but this
does not enable the name of the sending process or block definition to be (easily) determined.

To determine the SDL behaviour for each stimulus, it is necessary to define asignal for each distinct event that can lead
to adifferent transition in the SDL. If it isrequired to distinguish the same stimulus from different sources, then
different signal names should be used. (T9)A different signal (with a self descriptive name) should be defined for each
distinct message event.

Although it is possible to determine the source of asigna from the communication paths leading to the receiving
process, (8the source of the signal in an input should be indicated either by its name or by a comment with the input
of the signal because it makes it much easier to understand the description. Figure 68 shows alternative methods for
indicating the source of asignal.

Release
[*from
UserA*/

UserA_

[}
Release «&---- 4 from UserA
Release

Figure 68: Identifying the source of an input signal

It is possible for messages, particularly those coming from the environment, to be defined in a generic form such that it
IS necessary to examine the message contents to determine what event it represents. In these cases, a process can be
used to trandlate the generic message into signals that have a different name for each event.

10.7.5 Multiple outputs

Multiple messages output from a single process are sent in the order that the outputs are interpreted. A single output
containing several signalsis equivalent to outputting each signal in turn aslisted (left to right, top to bottom) in the text

of the output. 8D There should be only one signal in each output symbol. This makes the description easier to read and
clarifies the actual order of the outputs.

ETSI

67 ETSI EG 202 106 V2.1.1 (2003-11)

10.7.6 Transitions triggered by a set of signals

It is sometimes necessary for a process to trigger atransition only when it has received a set of more than one signal
(perhaps from the same entity or perhaps from different entities) although the order in which the signals are received is
not important. SDL does not have a built-in mechanism for achieving this but the behaviour can be modelled by saving
signals and treating each one in turn.

In the example in figure 69, the process is waiting for two messages (UserData, DataMode) before entering the
DataMode state. The DataM ode signal is saved so, if it arrives before UserData, it is not lost and can be processed later.
Other signals that can be received are treated in the same way regardless of whether UserData has been received or not.

PROCESS OriginationTerminal 4(5)
= m e
CallinProgress (WaitDataMode) (S\?!;&FZ;?\EZ@——% Other signals
]
[,
\ \
| | S | |
UserData i Require both DataModeReq UserPhone AudioModeReq
DataModeReq ---} Userdata and
[*from User*/ i DataModeReq [*from C\:onc*/ [*from User*/ /*from Conc*/
. AudioModeReq
B Dat:
eginbaia VIA Clink
$ %
mmmmmmmn e N
. N A timeout may .
WaitDataMode | be appropriate DataMode CallinProgress
| here.
S

Figure 69: Waiting for multiple messages

10.8 Gates and implicit channels

If any gate on atype based agent definition isleft unconnected in a diagram, implicit channels are derived to connect
the gate to any agentsin the diagram and gates or channels connected to the diagram that handle the interface elements
of the gate.

If no channel had been drawn between User and Net, there would have been implicit channels joining the otherwise
unconnected gates of User and Net to the matching gate on the other block. Implicit channels are created when there are
gates (such as the interface gates Calling and Called defined for User in figure 64 derived from block type Usertypein
figure 62) which are not connected to channels. Even for this simple example the use of explicit channelsto show the
communication paths makes it clear what paths exist, and in more complex examples there may be implicit channels
that were not intended between unconnected gates.

To avoid undesirable implicit channels, (82)all the gates of an agent should be explicitly connected to channels.

It is allowed to have gates on an agent definition that is not type based. Such gates are shown as gate symbols on the
outside of the block or process symbol that references the agent diagram (similar to the interface gates Calling and
Called on block type Usertype in figure 62)., but for the reasons explained above all gates should be connected to
channels but thisis not allowed for such gates shown outside agents. To avoid these undesirable implicit channels,

(83)gates should not be attached to block symbols or process symbols.

ETSI

68 ETSI EG 202 106 V2.1.1 (2003-11)

10.9 Other structuring mechanisms

In most blocks the contained agents (usually processes) define the behaviour of a block, and a block does not usually
have a state machine of its own. By comparison most processes just contain a state machine description and do not
contain any other agents. This keeps the structure relatively simple and easy to understand. All the state machinesin
such simple systems belong to processes and potentially have parallel concurrent behaviour: that is each process
instance can potentially have its own processor (though in areal implementation there would be less - perhaps only
one). It is not required that each process instance actually has its own processor, only that the system behaves asif this
isthe case.

Other structuring mechanisms exist in SDL, but make the model more complex.

10.9.1 Processes within a process

A processis alowed to contain other processes (but not blocks). Each contained process instance has its own state
machine and input queue, but al the state machines share one processing resource so that only one processinstanceis
scheduled at any one time: only one process instance can be interpreting a transition. When this process instance
reaches a state, one of the process instances that can enter atransition (if any) is scheduled. If there is no process
instance ready, al of the process instances wait until oneis ready. Such a structure more accurately models running
processes on a single processor. The starting and stopping and other co-ordinating actions of the processes can be more
complex. In general, ®¥)process definitions contained within process definitions should be avoided, unless the
intention isto exclude concurrent interpretation of processes. The diagram of a process (type) with contained
processes isidentical to ablock (type - respectively) with contained processes except for the keyword process instead of
block in the diagram heading.

PROCESS sdu2pdu 1(2)

Converter

Sdu t Pdu

from_| | to_

to_ from_
upper | |upper lower | | lower

Figure 70: A process with contained processes.

10.9.2 Shared data

Any agent can contain data variables even if contains other agents and no explicit state machine. The contained agents
can access these variables. If the containing agent is ablock, there isan implicit state machine for the block that owns
these variables, and access to the variables is by implicit remote procedure calls. If the containing agent is a process, the
contained processes are scheduled one at a time (as described above) and access the data directly.

The use of such data may be a convenient way to represent a common database that is accessed by different parts of the
model. In most cases an agent that encapsulates the data would probably better model this, so that it is clear what
communication isreally taking place. In any case, shared data should not be used to pass information between agents
that otherwise communicate via a normative interface. (8)The use of shared data should be avoided.

10.9.3 Hiding and re-using parts of a state

In more complex systems where a large number of different signals can be received in each state, the behaviour may be
difficult to understand even after introducing multiple occurrences of the state on different pages of the diagram. In
these cases, it may be acceptable to hide the consumption of some of the lessimportant parts of the behaviour in a state
diagram, so that input of some signalsis hidden from the agent level. Hiding some sub states in this way can, in some
instances, be better than using a procedure diagram because signals that cause exit from the state are shown with the
state in the agent diagram.

ETSI

69 ETSI EG 202 106 V2.1.1 (2003-11)

Use of acomposite state (one with behaviour in a state or state type diagram) to hide distracting detail can make the
overall behaviour of agent easier to understand. A composite state is appropriate if the agent is considered to beina
"global state”" (such as establishing a call), but actually needs different states related to the detailed handling of some of
the signals received. In figure 71 the state CallinMonitor is based on the STATE type Monitor in figure 72 that gives
more detail for the state, in this case to receive two signals before proceeding to the Data state.

A state that has an associated diagram (a composite state) can be recognised by an exit line that goes directly to a
transition or another state. It is not always easy to see if a state is basic or a composite because:

- the symbol is the same in each case;
- there can be multiple occurrences;
- the exit line may not be obvious and there need not be an exit line.

In particular, if astate diagram (rather than a state type) is used, this has the same name asin the state symbol, which
therefore looks like a basic state. Unlike other diagrams, no specific reference symbol exists for STATE diagrams.

If, however, a composite state is based on a state type, it is clear the state symbol contains a composite state because a
colon and the STATE TYPE identity follow the state name. Also a state type diagram must have a separate reference
from the diagram in which it is defined, such as the reference to Monitor in the state type symbol in figure 71. For these
reasons (86)a composite state should (87use a state type diagram rather than a state diagram.

PROCESS OriginationTerminal StateUse(6)

]

[*Data UserPhone AudioModelnd
mode*/ [*from User*/ [*from Conc*/

CallinMonitor
:Monitor

\
r
< ®
oo
g
o
> >
o =
EITI
3

AudioModeReq
VIA Conc

(Data)(CallinMonitor) Audio

Figure 71. A state that references a STATE TYPE

ETSI

70 ETSI EG 202 106 V2.1.1 (2003-11)

.
[* Exits when both

UserData and DataModeReq
received. \ |
)) UserData DataModeReq
Other inputs in the [*from User* *from Conc*/
calling agent cause
exit from the state. */
DataModeRe UserData
[*from Conc*/ [*from User*/

\ \
@ [*Data mode*/

Figure 72: A STATE type diagram

Another advantage of using a state type, rather than a state diagram, isthat a state type can be used in several places.
Monitor could be used with state Audio asin figure 73. Other inputs from Audio are defined elsewhere.

Audio
:Monitor
Data

Figure 73: Re-use of the STATE TYPE used in figure 71

10.9.4 Using packages

When ASN.1 isincluded into SDL, the ASN.1 istreated as a package referenced from the SDL. Other packages that
define commonly used behaviour could also be included. In both these cases, the SDL is made simpler by not having to
repeat the contents of the package. Some dangers of using an external package are, firstly, that it may not be clear
exactly what the package does and, secondly, that it may not be obvious that the contents of the package may be
changed.

The main advantage of packagesis the possibility of re-use, which for standardsislesslikely than for product
engineering. In a standards context it is often better to have as most of the definition within the standard itself and
packages (other than for ASN.1) would not normally be needed.

10.9.5 Exception handling

Exceptions provide a mechanism for handling situations that are possible but unusual or undesirable. Exception
handling tends to be more difficult to understand than control that depends on decisions, because a search hasto be
made (both by a reader and during interpretation) for the exception handler apart from the normal control flow. The
advantage of exception handler isthat normal flow can be more concise as the abnormal situations can be handled in
one place.

(83)A standard should be defined so that the language-defined exceptions (such as OutOfRange) do not occur. In
most cases this can be achieved by explicit checks.

ETSI

71 ETSI EG 202 106 V2.1.1 (2003-11)

11 Specification and use of data

A very important part of any protocol or service standard is the specification of data. SDL hasits own built-in data
types and mechanisms to create new data types. However, the standardized data type notation, ASN.1

(see ITU-T Recommendation X.680 series[8] [9][10] [11], is usually used in modern telecommunications standards to
specify messages and other data, particularly for normative interfaces. ASN.1 data types may be used as an alternative
to SDL data types by making these available to the SDL through ASN.1 modules used as packages

(see ITU-T Recommendation Z.105 [5]).

NOTE: Strictly speaking SDL datatypes are called 'sorts. However, in the present document for the sake of
simplicity the term 'data type' is used both in the context of using ASN.1 and SDL sorts.

An advantage of using ASN.1 isthat the ASN.1 data types can be associated with encoding rules, whereas there is
currently no standardised way of associating encoding rules with SDL data types.

(89ASN.1 should be used to specify data and the ASN.1 data definitions should be made common to both the SDL
specification and the non-SDL parts of a standard.

This approach of common data has the significant advantage of reducing the possibility of confusion and mistakes that
can be introduced if there are separate data descriptions of the same or similar data structures.

There are no operatorsin ASN.1. However, when ASN.1 isused with SDL, the basic types of ASN.1 (such as
INTEGER) are mapped to the corresponding SDL types (in this case Integer) and therefore the predefined SDL
operators can be used with these types. Similarly an ASN.1 SEQUENCE (or SET) istaken to be an SDL STRUCT, an
ASN.1 CHOICE an SDL CHOICE, and a SEQUENCE OF (or SET OF) an SDL String. Table 2 shows the mapping
between some ASN.1 and SDL.

Table 2: Some ASN.1 types and corresponding SDL data types

ASN1 SDL
BIT Bit
BIT STRING Bitstring
BOOLEAN Boolean
CHOICE CHOICE
OCTET STRING Octetstring
SEQUENCE STRUCT
SEQUENCE OF String
SET STRUCT
SET OF Bag

11.1 Specifying messages

One of the main purposes of using SDL inan ETS| standard isto provide an unambiguous description of the exchange
of messages over normative interfaces(90)SDL signals should be used to represent normative messages with ASN.1
describing the parameters carried by the messages. The behaviour diagrams of SDL agents describe dynamic
mechanisms that control the sending and receiving of these messages.

NOTE: The details of these dynamic mechanisms are not usually normative and the SDL that describes them
should be regarded as just one description of any number of possible alternative descriptions. What is
normative is the behaviour that the combined SDL state machines exhibits over the normative interfaces
with regard to message interactions.

Even though an ASN.1 module will specify the complete set of messages and message parameters relevant to a
standard, it isunlikely that al the message parameters will be directly relevant to the SDL model. Note that even if the
ASN.1 data type definitions are complex, only those parameters relevant to the dynamic requirements of the standard
need actually be used in the SDL behaviour descriptions. In this way, the complexity of the data type definitions does
not adversely affect the readability of the SDL specification.

ETSI

72 ETSI EG 202 106 V2.1.1 (2003-11)

11.1.1 Structuring messages

Except in the very simplest of cases, (®Dthe top-level parameters of messages should be contained in a single
structured type (e.g., ASN.1 SEQUENCE or SET) rather than specified asa list of smpletypes.

For example, the longer but considerably more meaningful specificationin a) below, is preferable to the more open
simple signal specification in case b). Although a) could be completely expressed in SDL (using STRUCT and Bitstring
with SIZE), ASN.1 is used as this the preferred notation. In b) no ASN.1 is necessary because the SIGNAL is defined
just in terms of Bitstring mapped from the ASN.1 datatype BIT STRING.

a)
Sl GNAL SETUP(SETUPtype); /*in SDL */
-- in an ASN. 1 nodul e used as a PACKAGE by the SDL
SETUPt ype 11 = SEQUENCE
{ header Header , -- Note that these exanples follow the ASN. 1 convention of
identifier Identifier, -- starting identifiers with |lower case letters and starting
extensi onBl ock ExtensionBlock -- type references with upper case letters.
}
Header ::= BIT STRING (SIZE (8..32))
Identifier ::= BIT STRING (SIZE (8..8))
Ext ensi onBl ock ::= SEQUENCE
{ call Reference Call Reference,
partyReference PartyReference
Cal | Reference ::= BIT STRING (S| ZE (4..8))
PartyReference ::= BIT STRING (SIZE (4..8))
callref15 BIT STRING ::= '00001111' B
b)
/* in SDL */

SIGNAL SETUP (Bitstring, Bitstring, Bitstring, Bitstring);
/* NOTE that BIT STRINGin ASN. 1 is mapped to Bitstring in SDL */

When compared with item b), the ASN.1 in item a) has the benefit of being able to give explicit names to message
parametersin the SDL signal. It uses SIZE restrictionsin areadable manner. Finally, an advantage of using ASN.1in
thisexampleisthat the ASN.1 data types, the user defined SETUP and the pre-defined BIT STRING, can be associated
with encoding rules.

The use of structures has the added benefit of allowing the easy capture and manipulation of the entire contents of
messages rather than on a parameter-by-parameter basis. Figure 74 shows how the contents of an incoming message can
be simply output on another channel. In this example, setupOut has been declared as a variable of a structured type (see
below).

SETUP
(setupOut)

SETUP

(setupOut)
VIA Sub_Interface

Figure 74: Transferring message contents from Input to Output

ETSI

73 ETSI EG 202 106 V2.1.1 (2003-11)

A minor drawback of using complex structuresis that the notation to refer to the elementsin the SDL description may
be longer. For example, if two variables, setupExtensionblock and setupOut were declared as follows:

DCL set upExt ensi onbl ock Extensi onBl ock;
DCL setupQut SETUPt ype;

an assignment to store the ExtensionBlock value would be:

set upExt ensi onBl ock: = set upQut . ext ensi onBl ock

and an assignment in the SDL to the call Reference to output callref15 would be:

set upQut . ext ensi onBl ock. cal | Ref erence: = cal | ref 15
Clause 8.2 gives details of how operators can be used to hide long references. It aso shows how operators may be
added to ASN.1 types.

In the above example afull stop (.), was used to denote field selection. SDL also allows an exclamation mark (!) to be
used with the same meaning. Using an exclamation mark makesit clear that field is being selected rather than a method
applied to the variable, whereas the dot notation is normal for both cases in many other languages. (92For readability
the same symbol (exclamation mark or full stop) should be used for all field selectionsin one specification.

11.1.2 Ordering message parameters

Protocol messages are most easily specified using the ASN.1 constructors, SEQUENCE or SET. (93)If the parameters
in a message have to appear in a fixed order, then the ASN.1 constructor SEQUENCE should be used to specify the
message contents, asin the following:

SETUPI n :: = SEQUENCE
{ header Header ,
identifier I dentifier,

i nExt ensi onBl ock | nExt ensi onBl ock

}

However, it is common that a protocol specification will allow elements to appear in any order. 991 f the parameters of
a message may appear in any order, then the ASN.1 constructor SET should be used to specify the message contents.
For example, in the extension block of the previous example it could be required that it is possible to receive the
callReference and the partyReference in either order, in which case this would be specified as follows:

| nExt ensi onBl ock ::= SET
{ cal | Ref erence Cal | Ref er ence,
partyReference PartyReference

NOTE 1. InITU-T Recommendation Z.105 [5] SET and SEQUENCE are treated in the same way in SDL, and
therefore parameters are required to be in a specific order in SDL.

Another useful concept in ASN.1 is the ability to specify parameters as OPTIONAL. In the following example the
partyreference may be omitted

Ext ensi onBl ock ::= SET
{ cal | Ref erence [1] Cal | Reference,
partyReference [2] PartyReference OPTI ONAL

Finally, ASN.1, alows the specification of unions through the CHOICE construct, for example:

Gener al Message : = CHO CE
{ set up SETUPt ype,
rel ease RELEASEt ype,
acknow edge ACKNOMNLEDCGEt ype

}

NOTE 2: Tags ([1] and [2]) have been introduced in the SET ExtensionBlock to enable encoders to differentiate
between the two parameters, but are otherwise ignored in SDL models. Alternatively automatic tagging
could be used, asis assumed in the CHOICE General M essage.

ETSI

74 ETSI EG 202 106 V2.1.1 (2003-11)

11.1.3 Transposing other message formats

In many lower-layer protocol standards, messages are specified using atabular format. These tables will have to be
transposed to ASN.1 or SDL datatypesin order to be used in an SDL specification. In these cases it will probably be
adequate to specify a simplified form of the messages (e.g., by omitting various message parameters). (99When
mapping messages described in another format (such astables) to a simplified form as ASN.1 or SDL data types, the
structure of the simplified messages should be kept as close as possible to the structure of the original messages and
the names of messages and their associated parameters should be preserved. The important point is that messages
should be reduced to a simpler format in a consistent manner and that the mapping from the real messagesto the
simplified onesin the SDL iswell documented and obvious. Conversely, parameters that are not specified in the full
description of the messages should not be introduced in the transposed formal specification.

11.2 Specifying data that is internal to the SDL model

Datathat isinternal to the SDL model is datathat is not conveyed over a normative interface. Such internal data may be
specified using either SDL typesor ASN.1. In most casesit will be ssmpler to use SDL datatypes. SDL directly
supports the same features as ASN. 1 such as SIZE, OPTIONAL and CHOICE.

The main benefit of specifying the datain SDL isthat the datatype can be directly embedded in the SDL diagrams,
whereas ASN.1 data types have to be included by a USE package clause that refersto ASN.1 modules containing the
data type definitions.

While the mappings provide basic operators for using ASN.1 typesin SDL, data type specific operations can only be
added to an inherited type or some (otherwise unrelated) type. (99)When there are data type specific operations for
internal data, it isusually better to use SDL to define the data type rather than ASN.1 so that the operations can be
defined as part of the data type.

A minor disadvantage of ASN.1 (compared with SDL data types) isthat if one ASN.1 type is defined as based on
another type, the values defined on either type are values of both types:. the types are equivalent. In SDL the user can
choose to introduce either another name (asin ASN.1), or anew data type that inherits the same properties but is
distinct from the original. When such a new type is introduced, items of one type cannot be used (by mistake) where the
other type has been specified. Thisfeature is generally known as "strong type checking".

SDL has two predefined array constructor data types, Array and Vector. These do not have a direct correspondence to
datatypesin ASN.1 and it may be simpler to use these predefined data types rather than define typesin ASN.1. It may
also be simpler to define some data types directly in SDL using the predefined String constructor datatype. In al these
cases variables and values of the constructed data type can be indexed to select an array, vector or string element.
Indexing of Array, Vector and String constructs is denoted by the index expression in sguare or round brackets after the
variable (or value). O7)For readability, in one SDL specification the same brackets (square - which are distinct from
other uses, or round) should be used for all Array, Vector and String indexing.

11.2.1 Use of symbolic names

Clauses 9.1.4 and 9.1.6 recommend that SYNONY M definitions or enumerated types should be used to specify
symbolic names that can be used as decision labels and that convey meaningful information to the user. When the data
typeis specified in ASN.1, an ASN.1 value definition can be used instead of an SDL SYNONY M definition. For
example, in an ASN.1 module

maxNunber Lengt h | NTEGER :: = 20

isequivalent to the SDL SYNONY M definition

SYNONYM maxNunber Lengt h | NTEGER = 20;

The use of the symbolic name maxNumberLength for the value both makes the description more understandable and
alows the actual value to be specified in one place only. In this way, the value can be simply changed by changing the
definition and all uses (in expressions, parameters, data type definitions, size constraints, decisions and so on) will then
use the updated value. (®)Whenever possible symbolic names should be used rather than explicit value denotations
(such as 123, '0110'B). Either an ASN.1 value definition or an SDL SYNONY M can be used to define a symbolic
name. The explicit data value should appear just once: in the definition the symbolic name.

ETSI

75 ETSI EG 202 106 V2.1.1 (2003-11)

It is often the case that there are alimited number of values for a particular data type, and athough the actual
transmitted encoding may be important, in the specification of the behaviour it is only necessary to compare one value
with another and there is no need for other operations such as arithmetic on the values. The appropriate datatypeis an
enumerated type to introduce symbolic literal names for the values. Both ASN.1 and SDL allow an Integer value to be
associated with the literal. For example:

Li neState ::= ENUMERATED
{ out O Servi ce (1),
i nServi ceFree (2),
i nServi ceBusy (6) }

isequivalent to the SDL.:

VALUE TYPE Li neSt at e;
LI TERALS
out OF Ser vi ce
i nServi ceFree
i nServi ceBusy
ENDVALUE TYPE Li neSt at e;

[T
oneE

Wherever possible (99)ASN.1 ENUMERATED or SDL literal list types should be used for data that consists of a
collection of names. Numeric values should be associated with the values of a data type by using the named numbers of
an ASN.1 ENUMERATED or SDL literal list type.

If it is not possible to use a data type to define symbolic names for values, the name can be defined as an ASN.1 value
definition or SDL SYNONY M.

11.2.1.1 Using data TYPE and SYNTYPE

The VALUE TYPE (or OBJECT TYPE see 11.2.1.1.1) syntax can be used to specify an application datatypein SDL.
A datatype defined asa VALUE TYPE has variables that are associated with values of the type: the predefined types
(Integer, Boolean etc.) are defined using VALUE TY PE.

An SDL datatype has a set of values and a set of operations that can be inherited by another data type. An operation can
be an OPERATOR, which does not modify any of its parameters but can return aresult, or aMETHOD, which is
applied to a variable and can modify this variable.

SYNTY PE defines arange of another data type. Typically the range defines a subset of the values of the parent data
type, for example:

SYNTYPE

Int16 = | nteger CONSTANTS (O0..65535);
ENDSYNTYPE;

The range can include al values of the parent data type, in which case the SYNTYPE is particularly suitable for
renaming existing types, for example:
SYNTYPE

Dest Poi nt Code = | nt 16;
ENDSYNTYPE;

A SYNTY PE that does not define a subset of the values of the parent data type, can be used to rename a data type to an
alternative name.

VALUE TYPE, on the other hand, is more suitable for specifying new data. In general (09VALUE TYPE should be
used to define a new data type in a specification while SYNTYPE should by used to rename or constrain the values of
existing data types.

It is worth noting that the following ASN.1 specification:
Btype::= Atype
isequivalent to the SDL:

SYNTYPE Bt ype = Atype
ENDSYNTYPE Bt ype;

These data types have compatible values. An Atype value can be assigned to a Btype variable or vice versa.

ETSI

76 ETSI EG 202 106 V2.1.1 (2003-11)

11.21.1.1 Using OBJECT TYPE

When adatatype is defined as an OBJECT TY PE, avariable of that data type is associated with references to values. In
the following, such avariable is called an object variable.

When avalueis assigned to an object variable, an object is created that contains the value. When an object is assigned
to an object variable, the variable then references the object, so that it is possible for two object variables to reference
the same object. Therefore OBJECT TY PE datais more suited to the data structures that will be created dynamically
with elements linked by the reference characteristics of objects: for example linked lists, or trees.

OBJECT TYPE parameters of signals are either converted to values or require acommon container process. When such
asignal is used in an output in a process type whether the parameter is passed as avalue or an object will depend on the
context of process definitions based on that type. If the object is passed, two processes could refer to the same object
and there is the possibility of multiple processes changing the same object. If avalueis passed then there is little benefit
in having an object parameter. For these reasons (1°0OBJECT TYPE should be avoided as the data type for signal
parameters.

A datatype that is defined as a VALUE TY PE can be used as an OBJECT datatype by prefixing the data type name
with the keyword OBJECT AND THEREFORE DEFINES AN OBJECT TYPE. Similarly an OBJECT TY PE can be
used asaVALUE TYPE BY PREFIXING A DATA TYPENAME WITH VALUE.

When inheritance is used with OBJECT TY PE definitions, one result is that some operations using the data types
involved are "polymorphic", which means the actual operation to be applied depends on what happens when the system
isinterpreted. Because the polymorphic character of OBJECT TY PE definitions can make the use of the data difficult to
understand, 102OBJECT TYPE definitions(or a data type name prefixed by OBJECT) should be used only when the
data cannot be ssimply expressed with a Value type.

All datatypesinherit some properties from the Any datatype, an OBJECT TY PE that is aroot type for all data. Use of

the (103)Any data type to define variables should be avoided, because the resulting behaviour may be difficult to
understand and may have dynamic errors.

12 Using Message Sequence Charts (MSC)

12.1 Introduction
The Message Sequence Charts (MSC) language is defined in ITU-T Recommendation Z.120 [7].

A basic MSC describes a scenario and consists of interacting instances. An instance is an object that has the properties
of acertain entity. On an instance, the ordering of eventsis specified. Events can be message outputs, message i nputs,
local actions and timer events.

AnHMSC (High-level Message Sequence Chart) is aroadmap of scenarios, where the details are hidden and described
in basic MSCs or HM SCs that are referenced in the HM SC.

12.2 Relationship between MSC and SDL

Asfar as possible, entitiesin MSC should correspond to SDL entities. Normally, it is only useful to specify a subset of a
system's behaviour in MSC. It is aso common not to reproduce the complete SDL architecture in MSC, but to represent
only the important communicating parts with M SC instances.

Inthe ITU MSC recommendation, the interpretation of a message input is not described. (199When MSC isused in
combination with SDL, a message input in MSC should correspond to a signal consumption in SDL.

ETSI

77 ETSI EG 202 106 V2.1.1 (2003-11)

12.3 Presentation and layout

There should be a reasonable amount of information in an MSC diagram, making the specification easy to comprehend
but (105)each MSC diagram should be limited to the information that fits into one printed page. Additionally,

(106)when used in a standard, an MSC diagram should always be surrounded by a diagram frame and have an
attached name.

The structuring mechanisms in MSC can be used to avoid large diagrams. If splitting a scenario into several distinct
MSC diagramsis not feasible, vertical paging of diagrams can be used. If vertical paging is necessary, the instance
heads and the M SC diagram name should be repeated on each page. The instance end symbols must only appear on the
last page. However, horizontal paging should be avoided.

(107)A clear spacing between symbolsin an MSC diagram should be maintained both horizontally and vertically.
This makes it easier for each instance and message to be clearly distinguished from any others.

(108)An instance axis should always be terminated at the end by either an instance end symbol or a stop. If vertical
paging is used, an unterminated instance axis indicates that the diagram continues on another page.

12.3.1 Annotations
There are four different annotationsin M SC:
- note
appears between items of texts;
- comment symbol:
can be attached to events or symbols;
- text symbol:
may contain larger texts for documentary purposes,
- informal action:
may be used to informally express internal behaviour of an instance (see aso clause 12.10).

Asin any formal language, (109annotations help to improve the understanding of an MSC description and should be
used freely.

Another very useful practice is to annotate which scenarios (or parts of scenarios) that are normal from those that are
exceptional .

ETSI

78 ETSI EG 202 106 V2.1.1 (2003-11)

msc Setup_Request

Text This scenario shows the handling
symbol of a second connect request.
Ci i
CallingParty eior= CalledParty
ConnectRequest
I
CallingPartylInfo,
Note CalledPartylInfo, check nr of
ConnectionType = Encrypted
¢ yp yp ree encrypted Inf(_)rrnal
connections' action

ConnectAck

[The ConnectionType
I* CalledPartyinfo */ parameter is optional Comr;r)\lent

— — —

Figure 75: Annotations in MSC

12.4 Naming and scope

Most MSC names are globally visible within the set of MSC and HM SC diagrams defined by one M SC document
specification. An instance kind name is visible outside of its MSC document. Gate names and MSC formal parameter
names are visible in the scope of one MSC diagram.

Asfar as possible, 119namesin an MSC should be the same as the names of corresponding entitiesin the SDL. For
example, an M SC message hame should be the same as its corresponding SDL signal name, and an MSC instance
should have the same kind name as the corresponding SDL process or block.

An entity may have the same name as another visible entity if the two entities are of different classes. A message may
thus have the same name as a timer or an instance. 11DEntity names should be unique within a specification.

12.5 MSC document

An MSC document is a collection of MSCs and HM SCs (figure 76), declaring used instances, messages, timers and
MSC References. It is aso the defining document for an instance kind. An MSC document might specify an inheritance
relationship between two instances (instance kinds), allowing specialization of used scenarios (M SC References).

Since an MSC document is not needed unless instance decomposition, instance kind inheritance or the data concepts are
used, it can often be omitted in order to reduce complexity of the specification.

ETSI

79 ETSI EG 202 106 V2.1.1 (2003-11)

mscdocument All Scenarios
inst user;
inst sys;

(o) (oeptiond)

(m (e J(mw J(m)

mll

msc normal msc exceptional msc ml -

\V4

/N

Figure 76: Collection of MSC diagrams

12.6 Structuring

There are two distinctive mechanisms for structuring MSC specifications. The first isrelated to the logical system
architecture. The second isrelated to behaviour.

12.6.1 Architecture

12.6.1.1 Instance

Aninstanceis an object of an entity specifying behaviour by means of events that are ordered on the instance axis.
More than one instance might be used to describe one entity. Every instance has a name associated with it and an
optional kind name, e.g. process name, which indicates which entity the instance is describing. In relation to SDL, the
kind name can be preceded by a kind denominator which mat be one of the reserved words system, block or process.
An instance without kind name will have its own name as an implicit kind name. (112)|f there is an associated SDL
specification, each MSC instance should have a kind name and kind denominator corresponding to the name and
entity kind of the equivalent entity in SDL.

It is easy to add more and more instances to an MSC in an attempt to make it easier to understand. Unfortunately, this
can have the opposite effect by adding complexity which can be an unnecessary distraction. So, (113)the number of
instances included in an MSC should be kept low to maintain a focus on the normative interface(s) and important
entitiesin thelogical or physical model.

The instance name (together with the optional kind name) may be placed above or inside the instance head. For the sake
of consistency, (114)if the kind name is present in an MSC instance, the instance head symbol should contain the
instance name with the kind name placed above the symbol, as shown in figure 77. Otherwise both names have to be
separated by a colon symbol.

ETSI

80 ETSI EG 202 106 V2.1.1 (2003-11)

msc CallTermination))
kind denominator

process |

) Environment TerminalHandler kind name
instance head CallingParty Terminal
instance name

instance end |

Figure 77: Placement of instance name and kind name

12.6.1.2 Instance decomposition

Behaviour described by several instances can be composed into one instance, hiding the intra-communication between
the original instances. This means that the same part of a scenario isdescribed in (at least) two diagrams, firstly on the
higher level and secondly on alower level, showing the internal behaviour of the decomposed instance. Furthermore, a
decomposed instance needs a defining M SC document in which used instances, messages and MSC References are
defined. (119)| nstance decomposition should be avoided in M SCs because of the complexity it might introduce.

It is however good practice to represent a higher-level SDL entity with an instance, without describing the lower-level
behaviour, if this abstraction improves the understanding of the overall behaviour.

12.6.1.3 Dynamic instances

Dynamic instances in M SC can be described by using the instance creation and instance stop concepts. Generally,
standards describe a static view of the components avoiding the more complex dynamic identity relations and so
(116)dynamic instances should be avoided in MSCs. Instance creation and instance stop should only be shown if they
are avital part of the specification.

Note the difference between the instance end and the instance stop. The instance end terminates the description of the
behaviour of an instance within one MSC diagram, while the instance stop describes the termination of the entity that
the instance represents.

12.6.1.4 Environment

In general, one M SC specifies the possible behaviour of only a part of a certain system. Everything else isreferred to as
"the environment" with which messages can be interchanged. The environment can be considered to be one or several
instances that communicate with the instances in the M SC. Graphically the environment is represented by the diagram
frame. Communication with the environment is provided by message arrows connected to the frame (see figure 78).

msc Successfull_Setup

Originating_ Destination_
Network Network

CallRequest

SETUP

CALL_PROCEEDING

IncomingCall

CallAlerting

ALERTING |~

CallAnswer

CONNECTED

CallRequestAck

Figure 78: Messages being sent to and from the environment

ETSI

81 ETSI EG 202 106 V2.1.1 (2003-11)

There are situations when using the frame to represent the environment is counter-intuitive. In the example shownin
figure 78, anatural, but not justified interpretation would be that the message Call Alerting is sent in response to
message IncomingCall. In fact, message Call Alerting might be sent before message IncomingCall, possibly from a
different entity than the receiver of message IncomingCall.

As an dternative to the environment frame, specific instances may be used to describe the interaction of the system with
the environment. When there is communication with more than one distinct environment entity, explicit instances for
the environment enable the description of ordering. and alow a concrete behaviour description of external entities that
interact with the system under consideration. (117 nstances with instance kind name " environment" should be used to
represent the environment in an MSC.

msc Succesfull_Setup

Environment — — Environment
N Originating_ Destination_
CallingUser Network Network CalledUser
CallRequest

SETUP

CALL_PROCEEDING

IncomingCall

CallAlerting
ALERTING
- CallAnswer

CONNECTED |[*

CallRequestAck

Figure 79: MSC with instances representing the environment

12.6.2 Behaviour

In MSC, thereis a possibility to divide complex scenariosinto smaller, named descriptions. There are several reasons to
do this:

- making the specification easily readable and suitable for print-out;

- reuse of common behaviour parts, ensuring easier maintenance of the specification;
- hiding details while focussing on message exchange;

- keeping logically distinct parts separate.

This structuring of behaviour is realized by allowing expressions on MSC parts. The parts can be a group of events or
an MSC Reference. In an expression, the following relationships between the parts might be expressed:

- sequence (seq);
- dternative (alt);
- optionality (opt);
- repetition (loop);
- parallelism (par);

- exception (exc).

ETSI

82 ETSI EG 202 106 V2.1.1 (2003-11)

These expressions might be used in three different ways or contexts:
- HMSC;
- MSC referencesin basic MSCs;
- In-line expressions in basic MSCs.

An MSC Reference is used to refer to other MSC or HM SC diagrams by means of their M SC name. M SC References
may be used within basic MSCs or in HM SCs.

Generally, unrestricted use of the expressions can cause an explosion of the number of scenarios, which may cause
problems with validation.

12.6.2.1 High-level MSC (HMSC)

The composition of a set MSCsis specified by means of aHHigh-level MSC (HM SC) which is aroadmap of the
contained M SC References. HM SCs provide a graphical way of describing the combination of Message Sequence
Charts, typically visualizing sequence, alternative and loop relationships.

(118)HM SCs should be used to specify a high-level view of scenarios which are defined in other MSC or HMSC
diagrams.

Apart from MSC References, an HM SC can aso contain conditions, start, stop and connection symbols.

(119 Connections should always be used when HMSC flow lines join or merge to distinguish them from simple
crossing lines.

Unlike plain M SCs, instances and messages are not shown within HM SCs, which focus only on composition aspects.

ETSI

83 ETSI EG 202 106 V2.1.1 (2003-11)

msc NetworkHandover

A,

Force_Handover

Association ‘

Link_Capability

No Token Support
available

Token based security j

Encryption_Startup

Y

0
Token_NW _signalling
>

Authentication ‘
)

5

Info_Transfer ‘
)

Setup_Radio_Connection

Handover_Completion ‘
)

-

Figure 80: Example of HMSC usage

The annotations, " Token based security” and "No token support available" help to provide some helpful functional
segregation within the HM SC shown in figure 80. Such (129annotations should be used within HMSC to explain the
purpose of different alternative branches.

HMSCs are hierarchical in the sense that an MSC Reference may refer to an HM SC and, consequently support atop
down design approach very well. In order to maintain sufficient transparency and manageability, 12DReferences to
other HM SCs should be used within HMSCs to ensure that a logical structuring of described behaviour is achieved.
This has the added advantage of keeping to a minimum the number of symbolsin any one HMSC.

An MSC Reference may contain atextual operator expression instead of a single Reference name. The textual
expression offers the same expressiveness as the graphical notation with the one exception that loop boundaries can be
given in the textual form. MSC Reference expressions are useful for a compact representation, in particular of severa
aternatives, but makes the description less intuitive. To improve readability, (122)graphical HMSC expressions should
be used in preference to textual Reference expressions.

ETSI

84 ETSI EG 202 106 V2.1.1 (2003-11)

msc StartUp_Connection msc StartUp_Connection

StartUp ‘
>

loop <1,4>
ConnectionRequestj

ConnectionRequest \

e
[

connected idle

L

Figure 81: HMSC with reference expression
and corresponding HMSC with graphical relations between the references

12.6.2.2 MSC reference in basic MSC

Behaviour parts can aso be reused or abstracted in basic MSCs by using MSC References connected to the instances. In
general, the number of M SC References should be kept low within aplain MSC in order to focus on the message
interchange.

HM SC References may be included in basic MSCs but referring to "overview" charts from detailed sequence
specifications can be confusing. Therefore, (123)Plain MSCs should not include HM SC References.

M SC References in basic M SCs should be used as a structuring means and for the reuse of scenarios. Figure 82 shows
an example of MSC References used in the specification of atest purpose preamble and postamble. As such, the MSC
Reference plays a similar role to that of a procedurein SDL. (124)1f the same scenario appearsin several MSCs, it
should be specified asan MSC of its own and referenced from other MSCs.

ETSI

85 ETSI EG 202 106 V2.1.1 (2003-11)

msc IN2_Basic msc O_S2P_Preamble
| scF] | CSF_SSF | [SigCon_A | | scF] | CSF_SSF | [SigCon_A
Setupind
{ O_S2P_Preamble j -
Invokelnd
InvokeReq
- InvokeReq
Resultind o
- ContinueReq N
[Release_call_PostAmble j I P e

Figure 82: MSC references in basic MSC

To ensure readability, (129each message involved in an MSC (?that is referenced from a basic MSC?) should have
both its output and input described within the diagram.
12.6.2.3 Inline expression

An inline expressions can be looked upon as an expanded form of an M SC Reference expression used in abasic MSC
context. They are ideally suited to the compact description of several small variants, typically covering only asmall
section of the complete M SC which means that the inline expression should contain only a few events. 126)When it is
not feasible to use MSC Referencesto describe different sequence structures, inline expressions should be used.

Inline expressions are used to define concisely several different sequences that can occur at the same place in the
enclosing diagram. A diagram using an inline expression is equivalent to several diagrams where the inline expression
is replaced by each of the defined sequences in turn. Inline expressions can use the following operators on events:

- sequence (seq);
- dternative (at);
- optionality (opt);
- repetition (loop);
- parallelism (par);
- exception (exc).

Inline expressions can be nested. Inline expressions give the benefit of conciseness at the expense of making a
specification more complex and, thus, more difficult to read. (12))The use of multiple inline expressionsin a single
MSC diagram should be limited to avoid an unnecessary explosion in the number of implicit scenarios.

ETSI

86 ETSI EG 202 106 V2.1.1 (2003-11)

msc Release

‘ user_A ‘ ‘Network_A ‘ ‘Network_B
» Cancel
Deactivate
=< RespTimer
alt Off_line
> RespTimer
Success
r+—x RespTimer
Fail -

Figure 83: Usage of inline expression

If inline expressions are used, (128)each message involved in an inline expression should have both its output and
input described within the inline expression in order to make an intuitive description.

In certain situations, inline expressions are the only descriptive way to illustrate a scenario. For example, after setting a
timer an alternative can be used to describe both the normal course of action and the exceptional behaviour resulting
from atimeout. A scenario with two or more alternative courses of action might either be described in an HMSC, where
the alternative is described by different MSC References on alternative paths, or in abasic MSC, where the alternative
is described by alternative inline expressions. (129HMSCs should be used to highlight significant alternative or
optional behaviour paths but; if the differences are only minor, these could be described within an MSC using inline
expressions.

12.7 Data

Although in many casesit is not necessary to model data within an MSC in a standard, it can sometimes be beneficial to
use data related more to the description than to the described system. An example of this usage is specification data
needed to reduce the complexity of the behaviour (e.g. loop boundaries and guard conditions on alternatives).

An example of using system related datain MSC is describing or limiting the parameter data that can be sent by
messages, see figure 84.

A consequence of using datain MSC is that the specification becomes more detailed and complex. If message
parameters should be stated when describing message passing, then the message needs to be declared in advance,
together with the data type declarations in a surrounding M SC document.

When data (type information or values) can enhance the understanding of an MSC, this may be indicated informally by
notes, comments or informal actions, see figure 86. To formally express datain MSC can lead to an unnecessarily
complex specification that can be difficult to understand and maintain.

(130)pData types and expressions introduce complexity to a specification and it is therefore preferable to omit them
from MSC diagrams. As an alternative, annotations may be added to describe the data if more detail is needed. Data
should be described formally in MSC only when greater formality than can be achieved by using annotationsis
required.

ETSI

87 ETSI EG 202 106 V2.1.1 (2003-11)

nscdocunent Scenari os msc CallRequest
inst FJaIIingParty CallingParty Net CalledParty
vari abl es
CallingPartylnfo, Cal | edPartyl nfo: Subscri ber | nf oType; CallRequest IncomingCall
Cal I Type: Cal | Type; Call > -
inst Net: (CallingPartylInfo,
inst CalledParty; gg”%g:)rtylnfo, OffHook
g Cal | Request: (SubscriberlnfoType, Subsriber I nfoType, Cal | Type); -
msg ConfirmCol I ect Call, Cal | Request Ack: (SubstriberlnfoType); opt
nsg I ncomingCal |, OffHook, Confirned;
when (CallType
I anguage SDL: = CollectCall)
data) ConfirmCollectCall
“use Predefined; Cal | Request) ™
use Paraneter Types_ASNL; "; (CallingPartyinfo)
Confirmed
CallRequestAck
h (CalledPartyInfo)

Figure 84: Formal usage of datain MSC

12.8 Message

An M SC message describes two asynchronous events: a sending event that is performed by the sending instance and a
receive event that is handled by the receiving instance. The receive event is optional (see clause 12.8.1).

Messages may cross instances that are placed between the sender and receiver. By rearranging the order of the
instances, i nstance crossing messages can be minimized. (13D The crossing of MSC instances by messages should be
minimised by placing frequently communicating instances close to each other wherever possible. However, the
natural and logical ordering of entities should be considered to be more important than strict adherence to this guideline.

A message arrow may be drawn either horizontally or with a downward slope. Both forms are equivalent but the
downward slope is sometimes used informally to indicate the passage of time. Since thisis prone to misinterpretation,
(132)delay or the passage of time should be described by the time conceptsin MSC (see clause 12.13).

M essages with downward slopes can also be used to describe the overtaking of messages. However, (133)the
unnecessary crossing of messages should be avoided since it obscures the meaning of an MSC, see figure 85.

In general, two or more events may not be attached to the same point or at the same level on an instance axis. Thereis
one exception to thisrule. An incoming event and an outgoing event may be attached to the same point or at the same
height. Thisisinterpreted asif the incoming event is drawn above the outgoing event.

Although both representations are equivalent, within a standard, (13%an MSC should show an outgoing event below
the incoming event that preceded it as this presentation gives a clearer description of the ordering relationships.

ETSI

88 ETSI EG 202 106 V2.1.1 (2003-11)

The two diagramsin figure 85 are semantically equivalent, but the layout in MSC m2 makes the scenario easier to
comprehend.

msc m1l msc m2
e 1 [| [B e] [] [
a b a |
i c d= b
>< a
c
N N e I N .

Figure 85: Clear ordering of events and separation of message lines

M SC does not require the parameters of the message to be described. However, providing an informal type namein a
message is often useful when creating an SDL specification with an MSC model asinput. In some cases, it might also
be of value to indicate that a parameter has a certain value if thisimproves the understanding of the scenario. In
protocol standardsit is not unusual for a message to have an extensive parameter list defined and the inclusion of such
lists with all messages can make an MSC very difficult to read.

The description of MSC message parameters may differ from SDL signal parameters regarding the level of detail. In a
single scenario, it is common to highlight only the interesting aspects of the message parametersi.e.; the part that
affects the further behaviour of the scenario. This abstraction is a very useful mechanism that ensures that the scenarios

are not too detailed and complex.

M SC message parameters have aformal meaning in that they illustrate how values are transmitted together with the
message. These values must conform to the corresponding parameter data type in the message declaration. However, in
the interests of clarity, (135only those parameters that are absolutely necessary for the understanding of the message
sequence should be included with an MSC message. In order to be able to do this while still complying with the MSC
syntax, (138)if incomplete message parameter information is to be shown in an MSC, this should be given in a note,
following the message name as shown in figure 86.

msc CollectCall

CallingParty Net CalledParty
CallRequest
* > IncomingCall
CallingPartylnfo, -
CalledPartylinfo,
CallType = CollectCall OffHook

*

A

ConfirmCollectCall

[* CallingPartyinfo */

Confirmed
CallrequestAck
D /* CalledPartyInfo */

Figure 86: Indication of message parameter information

ETSI

89 ETSI EG 202 106 V2.1.1 (2003-11)

12.8.1 Incomplete messages

Besides the specification of successful transmission of messages, incomplete messages can be described in MSC. An
incompl ete message communication is represented by alost message symbol or afound message symbol. A lost
message is a message output for which the message input is unknown. A found message is a message input for which
the message output is unknown. Lost messages may be used to describe the reaction of a system in error cases such as
in case of an unreliable transmitter.

(137 ost and found message should normally not be used in M SCs because they correspond either to the behaviour of
the environment or the behaviour of the underlying system. They should not be used to describe traces of normal
behaviour of systems.

A situation where alost message may be used isin a scenario that describes how re-sending of lost messagesis handled.
Found messages may be used when a message can be sent by several possible instances, and the sending identity is not
relevant to the scenario.

In SDL, unsuccessful signal transmission can only be described in an indirect manner.

msc Start_TF_fail msc ResourceAlloc
| Usera | | sessionHandler | | TFControl [Clienta_| | Resourcel Supervisor |
Start_TF
- Free
; Alloc
Waitresp » Allocated
TFReq [* Senderld */ -

[* Resourceld */

TFInd < Busy >
@

DeAlloc
StartFailed /* Senderld */
~ = If Senderld is
ree the Supervisor or
N N 2 e Alocaed
DeAllocated
/* Resourceld */

Figure 87: Lost and found message

12.9 Condition

MSC conditions can be used in two different ways:
- as setting conditions,
- as guarding conditions.

Setting conditions define the actual system state of the instance(s) that share the condition. Guarding conditions are
used to restrict the possible ways in which an MSC can continue.

Local setting conditions can be used to indicate system states corresponding to statesin SDL. The number of used local
conditions should be minimized in order to not obscure the primary function described by the MSC. Local guarding
conditions may contain a Boolean expression where variables are allowed. To make the description easy to understand,
(138)| ogical names should be used in MSC guarding conditions instead of variable expressions.

Conditions have no further meaning. They are not events and a global condition does not imply synchronization
between the shared instances.

ETSI

90 ETSI EG 202 106 V2.1.1 (2003-11)

Global conditions are attached to all instances contained in an MSC and denote global system states. Conditions are
used in HM SCsto indicate global system states or guards and impose restrictions on the MSCsthat are referenced in
the HM SC. Conditions a so give extra context information for the basic M SC and makes the MSC specification model
easier to maintain. An example of an MSC with aglobal initial condition (guard) and a global final (setting) conditionis
shown in figure 88.

msc ForceHandover

when Associated_to_old

RRC_force_handover_req

RLC_FORCE_HANDOVER

RRC_force_handover_ind

RRC_force_handover_rsp T_force_handover

RLC_FORCE_
HANDOVER_ACK

msc RadioHandover_HL

RRC_force_handover_cnf

Forced_Handover_|nitiated

msc RadioHandover

Associated_to_old

]
]
/

MT_ENV MT_RLC

Y 7

opt

AP_RLC AP_ENV

when Associated_to_old

RRC_handover_notify_req

RLC_HANDOVER_NOTIFY

' RRC_handover_notify_ind

RadioHandover
RRC_forward_handover_req

RLC_HANDOVER_REQUEST

Associated_to_new RRC_radio_handover_rsp
RLC_RADIO_
| JANDOVER COMPLETE

RRC_radio_handover_cnf

RRC_forward_handover_ind

AN

Associated_to_new

—

Figure 88: Global guard and setting conditions used to restrict composition of scenario parts

12.10 Action

In some situations, it can be useful to indicate informally the action that is performed after a message is received
(seefigure 75). Thisis possible by using an informal action. (139Use of the MSC action symbol should be limited to
the informal expression of a specific aspect of behaviour, which helpsto clarify the surrounding message sequence,
and to data assignments.

ETSI

91 ETSI EG 202 106 V2.1.1 (2003-11)

12.11 Timer

Timers may be used informally to indicate delays or time constraints on event sequences. Since there is an explicit
notation in MSC for time constraints and measurements (see clause 12.13), this should be used instead of timers asthe
notion of atimer entity may be too precise for most standard specifications.

msc CheckBalance

Environment Environment

DisplayUnit UlControl \ \ KeyboardUnit

DisplaySelectService

WaitForSelection

CheckBalance

DisplayPleaseWait

DisplayDelay

DisplayCurrentBalance

Figure 89: Timer usage

NOTE: The WaitForSelection timer is used to restrict the waiting time for a response signal. The DisplayDelay
timer is used as adelay in the execution.

In certain situations when using separated timer symbols, it is necessary to add an extratimer identifier in order to have
an unambiguous scenario.

ETSI

92 ETSI EG 202 106 V2.1.1 (2003-11)
msc 2Requests User_a Network User_b
ServiceReq
InfoNeeded
WaitResp, a X—|
alt Info
WaitResp, a »X—|
WaitResp, a X
ServiceReq
InfoNeeded
> WaitResp, b
alt Info
—xX WaitResp, b
> WaitResp, b

Figure 90: Separated timer symbols and timer identifier

12.12 Control Flow

In specifying distributed systems, all communication is normally described by asynchronous messages. It is however
often the case that communication is by signal pairs, a call message and a corresponding reply message, together

making a synchronous communication.

A logically connected signal pair might be high-lighted in an M SC specification by using the special symbolsfor reply,

method and suspend.
The control flow concepts are:
- method call;
- reply symbol;
method symbol;

- suspend symbol.

A method call is represented by a message symbol with the CALL keyword before the message name. For a method
call, there must always be a corresponding reply, and vice versa.

The method symbol is used to indicate that an instance is active. The suspension symbol is used to indicate that an
instance is suspended, typically waiting for the reply of a blocking method call. The normal instance axis means that the
instance isinactive, waiting for an activating event or atask to perform.

A method call followed by a suspension region is a synchronous method call.

If MSC Instances are used to represent entities that are not independent (asynchronously parallel), then the method and
suspend symbols can be used to indicate how each active object gets the flow of control from the CPU.

ETSI

93 ETSI EG 202 106 V2.1.1 (2003-11)

msc UpdateAll

Client Client
‘Controller‘ ‘ Server ‘ Client_a Client_b

Call UpdateAll

Suspend =

symbol

UpdateAck
Method » || Update
symbol
UpdateAck
UpdateAllReply

L

Figure 91: Specification of synchronous communication utilizing the suspend
symbol and the method symbol.

12.13 Time

The time concepts can be used for:
- time measurements,
- timing constraints on or between events.

Time constraints are useful for stating time requirements without adding behaviour to the model (compare with the use
of timers). Using the time concepts assumes that a data type for handling time expressionsis available.

nscdocunent Al |l Scenari os msc Successful_Setup

inst CallingUser;

inst OriginatingNetwork Environment Originating_ Destination_ Environment
variables rel 1 Tinme; CallingUser Network Network CalledUser
i nst Desti nationNetwork; CallRequest
inst CalledUser;
[10,60] SETUP (0,20] &rell
| anguage SDL; -
Yo Successful _Setu
data use Predefined; - p CALL_PROCEEDING
[0.5*rell, 2*rel1] IncomingCall
CallAlerting
ALERTING |«
- CallAnswer
CONNECTED
CallRequestAck |
V. .

Figure 92: Time constraints between events

NOTE 1. Thetime between sending the CallRequest message and receiving the CallRequestAck message should be
within the range 10 to 60 time units.

NOTE 2: Thetimeit takesto send the SETUP message is measured and saved into the time variable rel1 and
should take no more than 20 time units.

NOTE 3: Therelative time constraint [0,5 x rel1, 2 x rel 1] requires that the time it takes to send the
CALL_PROCEEDING message should be at least 0,5 x rel1 and at most 2 x rel 1.

ETSI

94 ETSI EG 202 106 V2.1.1 (2003-11)

12.14 General ordering and coregion

Although an instance describes atotal order of its events, an MSC normally describes only a set of partial event orders.
Thisis because instances are independent, since each MSC instance is asynchronously paralel. Synchronization
between instances is normally achieved by message passing.

msc PartialOrders msc TotalOrder
1] [2] [[] [| [|
a a
b
b
[

S e — IS I
An M SC with three different partial A totally ordered M SC
orders: a.out — a.in — b.out — b.in — c.out — c.in

a.out — a.in — b.out — b.in
a.out — b.out — a.in — b.in
a.out — b.out — b.in — a.in

Figure 93: Event orders of MSCs

Coregions are useful for describing situations where two or several events might happen in an arbitrary order on one
instance. They are also commonly used on decomposed instances to relax the total ordering imposed to the contained
instances by the decomposed instance. However, large coregions, covering many events might be very hard to interpret.
Thus, (140the number of events shown in an MSC coregion should be limited.

In figure 94, the four messages that are sent to the Server can be received in any order by the Server instance. However,
the first Info message must arrive after the second Info_Req is sent and the two Info_Req messages must be sentina
specific order.

msc Multiple_Info_Request

Client_a Server Client_b

Info_Req

A

Info_Req

Info -

Y

Info

A

InfoEnd

Y

InfoEnd

Figure 94: Use of coregion
General ordering can be used within a coregion to specify partial ordersin an otherwise completely unordered region.

However, 14Dan inline alternative expression should be used in an MSC instead of general ordering within a
coregion.

ETSI

95 ETSI EG 202 106 V2.1.1 (2003-11)

In the left diagram in figure 95, the order restrictions that existed in the example in figure 94 are released. On the other
hand, there are a number of unwanted event ordersin this MSC. An InfoEnd message can for example be consumed
before its corresponding Info message.

In the right diagram in figure 95, each message triplet is now ordered, but the three events related to the communication
with Client_a are unordered with respect to the events related to the Client_b communication. (The Info_Req and Info
events on the Server are ordered by the imposed ordering at the Client instance.)

msc Multiple_Requests msc Multiple_Requests

Client_a Server Client_b
[Client a | [Server | [Client b | [Gienia] [Gienih]
Info_R
mo_req] Info_Req |]
| < |
! Info_Req ! ! Info_Req
I I I
Info :—> Info : :—_.
4’: —H: : Info
: Info I o j———————
InfoEnd i.‘ i v
|
e InfoEnd L Y !
: InfoEnd 4.1....2 ! InfoEnd
I:

Figure 95: General ordering within a coregion reduces the number of orders

12.15 Relationship between MSC and UML Sequence Diagrams

Sequence diagramsin UML and M SC have many similar concepts and also have the same basic scope. For normal
message interchange between instances, Sequence diagrams provide the same expressiveness as MSCs. However,
Sequence diagrams in UML 1.4 lack concepts to relate scenarios to each other (operators and M SC references), and
should only be used for small, isolated scenario descriptions.

msc UpdateAll
Controller) - Client_b:Client Client Client
I— Server Client_aClient
| | | | \Controller \ \ Server \ \ Client_a \ \ Client_b
UpdateAll call UpdateAll
e Update Update
———————>
UpdateAck UpdateAck
Update
Update
UpdateAck
UpdateAck
UpdateAllReply
< UpdateAllReply

Figure 96: UML sequence diagram and corresponding MSC

ETSI

96

ETSI EG 202 106 V2.1.1 (2003-11)

Annex A (informative):
Reserved words

A.l SDL

A.1l.1 Keywords

The following words are keywordsin SDL and cannot be used as names.

NOTE: Thelist of keywords shows only the lower-case presentation. The upper-case equivalent of each isalso an
SDL reserved word.

abstract
alternative
association
call
composition
continue
default
endchannel
endinterface
endoperator
endselect
endsystem
exception
external
gate

in

join
macrodefinition
mod

none
offspring
optional
output
private
provided
referenced
return
sender
signalset
state
synonym
then

try

via

active

and

atleast
channel
connect
create

else
endconnection
endmacro
endpackage
endstate
endtype
exceptionhandler
fi

handle
inherits
literals
macroid
nameclass
not
onexception
or

package
procedure
public

rem

save

set

size

stop
syntype

this

type

virtual

adding

any

block
choice
connection
dcl
endalternative
enddecision
endmethod
endprocedure
endsubstructure
endvalue
export
finalized

if

input

loop
method
nextstate
now
operator
ordered
parent
protected
raise
remote
select
signal
spelling
struct
system
timer

use

with

ETSI

aggregation
as

break
comment
constants
decision
endblock
endexceptionhandler
endobject
endprocess
endsyntype
env
exported
from

import
interface
macro
methods
nodelay
object
operators
out

priority
process
redefined
reset

self
signallist
start
substructure
task

to

value

xor

A.1.2 Predefined words

The following words are defined in ITU-T Recommendation Z.100 [4] in the SDL package "Predefined" and should not
be redefined or used for any other purposes:

97

ETSI EG 202 106 V2.1.1 (2003-11)

ACK Array Bag BEL

bit Bit bitstring Bitstring
Boolean BS CAN Character
Charstring chr CR DC1

DC2 DC3 DC4 del

DEL DivisionByZero DLE Duration
EM empty Empty emptystring
ENQ EOT ESC ETB

ETX Extract false FF

first fix float HT

incl Integer Invalidindex InvalidReference
IS1 1S2 1S3 1S4

last length LF Make
mkstring Modify NAK Natural
NoMatchingAnswer NUL num Octet
octetstring Octetstring OutOfRange Pid

power Powerset Predefined Real
remove Sl SO SOH

String STX SuB substring
SYN take Time true
UndefinedField UndefinedVariable Vector VT

A2 MSC

The following words are keywords in MSC and cannot be used as hames.

action after all alt

as before begin bottom

call comment concurrent condition
connect create data decomposed
def empty end endconcurrent
endexpr endinstance endmethod endmsc
endsuspension env equalpar escape

exc expr external finalized
found from gate in

inf inherits inline inst
instance int_boundary label language
loop lost method msc
mscdocument msg nestable nonnestable
offset opt otherwise out

par parenthesis receive redefined
reference related replyin replyout
seq shared starttimer stop
stoptimer suspension text time
timeout timer to top

undef using utilities variables
via virtual when wildcards

ETSI

98 ETSI EG 202 106 V2.1.1 (2003-11)

A3 ASN.1

The following words are keywordsin ASN.1 and cannot be used as names.

ABSENT ABSTRACT-SYNTAX ALL APPLICATION
AUTOMATIC BEGIN BIT BMPString
BOOLEAN BY CHARACTER CHOICE
CLASS COMPONENT COMPONENTS CONSTRAINED
DEFAULT DEFINITIONS EMBEDDED END
ENUMERATED EXCEPT EXPLICIT EXPORTS
EXTENSIBILITY EXTERNAL FALSE FROM
GeneralizedTime GeneralString GraphicString IA5String
IDENTIFIER IMPLICIT IMPLIED IMPORTS
INCLUDES INSTANCE INTEGER INTERSECTION
ISO646String MAX MIN MINUS-INFINITY
NULL NumericString OBJECT ObjectDescriptor
OCTET OF OPTIONAL PDV
PLUS-INFINITY PRESENT PrintableString PRIVATE

REAL SEQUENCE SET SIZE

STRING SYNTAX T61String TAGS
TeletexString TRUE TYPE-IDENTIFIER UNION
UNIQUE UNIVERSAL UniversalString UTCTime
UTF8String VideotexString VisibleString WITH

A4 UML

The following words are cannot be used as namesin UML.

«access» association «association» «become»
«call» complete «copy» «create»
«derive» derived «destroy» destroyed
«document» documentation «executable» «facade»

«file» «framework» «friend» Generalization
global «global» «implementation» «implementationClass»
implicit «import» incomplete «instantiate»
«invariant» «library» local «local»
«metaclass» «metamodel» new overlapping
parameter «parameter» persistence persistent
«postcondition» «powertype» «precondition» «process»
«realize» «refine» «requirement» «responsibility»
self «self» semantics «send»
«signalflows» «stub» «systemModel» «table»
«thread» «topLevel» «trace» transient
«type» «utility» XOr

ETSI

99 ETSI EG 202 106 V2.1.1 (2003-11)

Annex B (informative):
Summary of guidelines

Table B.1 provides a summary of the guidelines for the use of SDL for descriptive purposes. This summary should be
read in conjunction with the main body of text in the present document.

Table B.1: Summary of guidelines

Identifier | Guideline
NAMING CONVENTIONS

1 A naming convention that can be applied consistently to each notation used should be chosen

2 While it is acceptable to use the underscore character to delineate words within most SDL entity names,
it is advisable to avoid the use of the dash character in ASN.1 types and values in order to avoid conflicts
and misinterpretation in the associated SDL.

3 The general use of names which differ only in character case to distinguish between entities should be
avoided.

4 Care should be taken to ensure the consistent use of character case within names throughout an ASN.1,
SDL, MSC or UML specification

5 Names of less than 6 characters may be too cryptic and names of more than 30 characters may be too
difficult to read and assimilate.

6 The reserved words of all notations used within a standard should be avoided as defined names in each of
the individual parts

7 Readability is improved if the same convention for separating words within names is used throughout a
specification

8 In most cases an underscore character between each word removes any possibility of misinterpretation and
this is the approach that is recommended

9 In more complex models where each block is made up of a number of processes, the use of the same name
for a block and one of its constituent processes is likely to cause confusion and should be avoided.

10 The use of a single name for multiple purposes should be avoided wherever possible

11 The addition of project-specific prefixes or suffixes can make meaningful names appear cryptic and should be
used with great care

12 By giving blocks, processes and MSC instances names that represent the overall role that they play within
the system, it is possible to distinguish process names from procedure names. If carefully chosen, they can
help to link the SDL and MSC back to the corresponding clauses in the text description

13 The name chosen for an SDL operation should indicate the specific action taken by the operation

14 If possible, it is advisable to leave at least one significant word in the name unabbreviated as this can help to
provide the context for interpreting the remaining abbreviations

15 The name chosen for an interface or signal list should indicate the general function of the grouped signals

16 Where all signals between one block or process and another can be logically grouped together, signal list
names can be chosen to indicate the origin and the destination of the associated signals

17 A state name should clearly and concisely reflect the status of the process while in that state

18 If it is important to number states then this should be done in conjunction with meaningful names

19 The name chosen for a variable should indicate in general terms what it should be used for

20 Names used to identify constants can be more specific by indicating the actual value assigned to the constant

21 The names of SDL data types should be capitalized while the names of literals and synonyms should begin
with a lower-case character

PRESENTATION AND LAYOUT OF DIAGRAMS

22 The general flow of SDL behaviour diagrams and UML statechart and activity diagrams should be from the
top of the page towards the bottom

23 The flow on a page of an SDL process should end in a NEXTSTATE symbol rather than a connector

24 States that are entered from NEXTSTATE symbols on other pages should always be placed at the top of the
page.

25 Where transitions are short and simple they can be arranged side-by-side on a single page

26 When two or more transitions are shown on one page, there should be sufficient space between them to
make their separation clear to the reader

27 Connector symbols should generally only be used to provide a connection from the bottom of one page to the
top of another

28 All reference symbols and text boxes containing common declarations should be collected together at a
single point within the process diagrams.

29 Separate text box symbols should be used for each different type of declaration

30 Activity diagrams or statechart diagrams should use text boxes indicate what functions are specified in other

diagrams or in which diagram the behaviour continues

ETSI

100 ETSI EG 202 106 V2.1.1 (2003-11)

Identifier

Guideline

31

When the text associated with a task symbol overflows its symbol boundaries, a text extension should be
used to carry the additional information

32 Symbols that terminate the processing on a particular page should be aligned horizontally

33 In simple systems where each process communicates with only one or two other processes, the orientation of
INPUT and OUTPUT symbols can be used to improve the readability of the SDL. However, to avoid possible
specification errors and misinterpretation, explicit methods of identifying the source and destination of signals
should be used

34 If used, the significance of the orientation of SDL symbols should be clearly explained in the text introducing
each process diagram

35 A state, input and the associated transition to the next state should be contained within a single SDL page

36 Process diagrams should segregate normal behaviour from exceptional behaviour.

USING PROCEDURES, OPERATIONS AND MACROS

37 The use of procedures to modularise specifications and to 'hide' detail is strongly recommended

38 Convert informal text descriptions of actions into procedure calls and replace the task symbols with a
procedure symbols

39 All data relevant to the real behaviour represented by a procedure should be specified in the parameter list
and returned value (if any).

40 In most cases it is preferable to use operations instead of value-returning procedures.

41 Procedures should only read and write to variables that are passed to the procedure in the parameter list or
are declared within the procedure itself

42 Procedures should specify a level of detail that is suitable for the particular purpose of the standard

43 A functional procedure should fulfil its specified role and do nothing that could be considered to be a side-
effect

44 The processing of signals is one of the most important activities shown in the SDL of a protocol standard and
should normally be visible in the calling process rather than the called procedure

45 It is important that procedures that specify a limited sequence of actions should be given names that reflect
as fully as possible the activity performed by a procedure

46 Behaviour that could be considered a side-effect to its defined purposes, should not be specified in a
procedure

47 In the exceptional case that a procedure includes the specification of one or more states, it is important to
ensure that all signals which are not directly processed within the procedure are correctly handled for
subsequent processing

48 The names of procedures having multiple effects should reflect each intended effect either individually or
collectively

49 The textual syntax of SDL can be used to define simple operations

50 Complex operations should be specified as operator or method diagrams which are referenced from the
relevant data type specification

51 The use of macros should be limited to those cases where the macro can be contained within one printed
page

USING DECISIONS

52 It is essential that the complete range of values of the data type contained in the decision is covered by
ranges of values in the answers without any overlap

53 Identifiers used in decisions should clearly reflect to a reader the 'question’ and 'answer' nature of the
conditions being expressed.

54 The use of informal text in decision statements should be limited, preferably to those cases where the
decision is obviously binary in nature

55 In most cases, enumerated types rather than text strings should be used to express decisions.

56 ELSE should be used as a decision outcome value to distinguish between one or more specific outcomes
and all other possibilities

57 ASN.1 constraint or SDL SYNTYPE constructs should be used to limit the range of values represented by an
ELSE branch in a decision

58 SDL SYNONYMs should be used to define meaningful alternatives to the Boolean values of true and false if
this aids clarity

59 Procedure calls should be used in conjunction with decisions to eliminate the use of informal text

60 The ANY expression should not appear in the SDL specifications in standards except where it is included to
show the behaviour of an entity (such as a user) that is not the subject of the standard

61 Where mutually exclusive implementation options are to be expressed, the option symbol should be used
rather than a decision

62 SDL algorithmic flow control expressions should be restricted to situations where the required behaviour
involves only the processing of data but not the sending of signals and not the control of timers.

SYSTEM STRUCTURE, COMMUNICATION AND ADDRESSING

63 The SDL version of the architecture of a protocol or service should be consistent with and complementary to
other (non-SDL) descriptive diagrams

64 Comments should be used to convey to the reader the relationship of the SDL architecture to the relevant

non-SDL parts of the standard

ETSI

101 ETSI EG 202 106 V2.1.1 (2003-11)

Identifier Guideline

65 The SDL specification within a standard should comprise one system composed of at least one agent

66 SDL should be used to show the structure of a system as well as its behaviour

67 SDL sub-structuring should be used to simplify complex SDL models but should not be used excessively.

68 Multiple instances of SDL blocks and processes should be avoided if possible

69 Informative blocks or processes that are not needed to aid understanding should be omitted

70 If the same block or process is required at more than one place within an SDL specification, a BLOCK TYPE
or PROCESS TYPE should be defined from which instances can be derived.

71 Wherever possible, a minimal number of static instances should be used instead of dynamically created SDL
processes.

72 A specification area diagram (if used) should include the most important packages shown as reference
symbols with dependency shown on the diagram.

73 All normative channels (interfaces) should be clearly marked as being normative (using a comments box)

74 There should be no more than one communication path specified in each direction between one entity and
another.

75 Remote procedures, import/export, or shared data should not be used to exchange information between
blocks and processes

76 A small number of interface names (preferably one) should be used to identify the signals on a patrticular
channel or gate

77 All channels and gates should be shown with the associated interface names, signal list names or signals.

78 TO or VIA should be used in an output symbol to indicate the recipient clearly if this is not obvious from the
structure of the SDL system

79 A different signal (with a self descriptive name) should be defined for each distinct message event.

80 The source of the signal in an input should be indicated either by its name or by a comment

81 There should be only one signal in each output symbol.

82 All the gates of an agent should be explicitly connected to channels.

83 Gates should not be attached to block symbols or process symbols.

84 Process definitions contained within process definitions should be avoided, unless the intention is to exclude
concurrent interpretation of processes

85 The use of shared data should be avoided.

86 A composite state should

87 Use a STATE TYPE diagram rather than a STATE diagram.

88 A standard should be defined so that the language-defined exceptions (such as OutOfRange) do not occur.

SPECIFICATION AND USE OF DATA

89 ASN.1 should be used to specify data and the ASN.1 data definitions should be made common to both the
SDL specification and the non-SDL parts of a standard

20 SDL signals should be used to represent normative messages with ASN.1 describing the parameters carried
by the messages.

91 The top-level parameters of messages should be contained in a single structured type (e.g., ASN.1
SEQUENCE or SET) rather than specified as a list of simple types

92 For readability the same symbol (exclamation mark or full stop) should be used for all field selections in one
specification.

93 If the parameters in a message have to appear in a fixed order, then the ASN.1 constructor SEQUENCE
should be used to specify the message contents

94 If the parameters of a message may appear in any order, then the ASN.1 constructor SET should be used to
specify the message contents.

95 When mapping messages described in another format (such as tables) to a simplified form as ASN.1 or SDL
data types, the structure of the simplified messages should be kept as close as possible to the structure of
the original messages and the names of messages and their associated parameters should be preserved.

96 When there are data type specific operations for internal data, it is usually better to use SDL to define the
data type rather than ASN.1 so that the operations can be defined as part of the data type.

97 For readability, in one SDL specification the same brackets (square - which are distinct from other uses, or
round) should be used for all ARRAY, VECTOR and STRING indexing.

98 Whenever possible symbolic names should be used rather than explicit value denotations (such as 123,
'0110'B).

99 ASN.1 ENUMERATED or SDL literal list types should be used for data that consists of a collection of names

100 VALUE TYPE should be used to define a new data type in a specification while SYNTYPE should by used to
rename or constrain the values of existing data types

101 OBJECT TYPE should be avoided as the data type for signal parameters

102 OBJECT TYPE definitions(or a data type name prefixed by OBJECT) should be used only when the data
cannot be simply expressed with a VALUE TYPE.

103 Any data type to define variables should be avoided

ETSI

102 ETSI EG 202 106 V2.1.1 (2003-11)

Identifier | Guideline
USING MESSAGE SEQUENCE CHARTS (MSC)

104 When MSC is used in combination with SDL, a message input in MSC should correspond to a signal
consumption in SDL.

105 Each MSC diagram should be limited to the information that fits into one printed page

106 When used in a standard, an MSC diagram should always be surrounded by a diagram frame and have an
attached name.

107 A clear spacing between symbols in an MSC diagram should be maintained both horizontally and vertically

108 An instance axis should always be terminated at the end by either an instance end symbol or a stop.

109 Annotations help to improve the understanding of an MSC description and should be used freely.

110 Names in an MSC should be the same as the names of corresponding entities in the SDL

111 Entity names should be unique within a specification.

112 If there is an associated SDL specification, each MSC instance should have a kind name and kind
denominator corresponding to the name and entity kind of the equivalent entity in SDL

113 The number of instances included in an MSC should be kept low to maintain a focus on the normative
interface(s) and important entities in the logical or physical model

114 If the kind name is present in an MSC instance, the instance head symbol should contain the instance name
with the kind name placed above the symbol

115 Instance decomposition should be avoided in MSCs because of the complexity it might introduce

116 Dynamic instances should be avoided in MSCs.

117 Instances with instance kind name "environment" should be used to represent the environment in an MSC.

118 HMSCs should be used to specify a high-level view of scenarios which are defined in other MSC or HMSC
diagrams.

119 Connections should always be used when HMSC flow lines join or merge to distinguish them from simple
crossing lines.

120 Annotations should be used within HMSC to explain the purpose of different alternative branches

121 References to other HMSCs should be used within HMSCs to ensure that a logical structuring of described
behaviour is achieved.

122 Graphical HMSC expressions should be used in preference to textual Reference expressions

123 Plain MSCs should not include HMSC References

124 If the same scenario appears in several MSCs, it should be specified as an MSC of its own and referenced
from other MSCs.

125 Each message involved in an MSC (?that is referenced from a basic MSC?) should have both its output and
input described within the diagram

126 When it is not feasible to use MSC References to describe different sequence structures, inline expressions
should be used.

127 The use of multiple inline expressions in a single MSC diagram should be limited to avoid an unnecessary
explosion in the number of implicit scenarios

128 Each message involved in an inline expression should have both its output and input described within the
inline expression

129 HMSCs should be used to highlight significant alternative or optional behaviour paths but; if the differences
are only minor, these could be described within an MSC using inline expressions

130 Data types and expressions introduce complexity to a specification and it is therefore preferable to omit them
from MSC diagrams. As an alternative, annotations may be added to describe the data if more detail is
needed. Data should be described formally in MSC only when greater formality than can be achieved by
using annotations is required.

131 The crossing of MSC instances by messages should be minimised by placing frequently communicating
instances close to each other wherever possible

132 Delay or the passage of time should be described by the time concepts in MSC

133 The unnecessary crossing of messages should be avoided since it obscures the meaning of an MSC

134 An MSC should show an outgoing event below the incoming event that preceded it

135 Only those parameters that are absolutely necessary for the understanding of the message sequence should
be included with an MSC message

136 If incomplete message parameter information is to be shown in an MSC, this should be given in a note,
following the message name

137 Lost and found message should normally not be used in MSCs

138 Logical names should be used in MSC guarding conditions instead of variable expressions

139 Use of the MSC action symbol should be limited to the informal expression of a specific aspect of behaviour,
which helps to clarify the surrounding message sequence, and to data assignments.

140 The number of events shown in an MSC coregion should be limited.

141 An inline alternative expression should be used in an MSC instead of general ordering within a coregion

ETSI

103 ETSI EG 202 106 V2.1.1 (2003-11)

Annex C (informative):
Bibliography

ITU-T Recommendation Z.109: "SDL combined with UML".

ETSI

104

ETSI EG 202 106 V2.1.1 (2003-11)

History
Document history
V111 October 1999 Publication
V2.0.0 July 2002 Membership Approval Procedure MV 20020906: 2002-07-09 to 2002-09-06
V211 November 2003 | Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	5 Using specification languages in protocol standards
	5.1 Introduction
	5.2 Layered protocols
	5.3 Developing a protocol specification
	5.3.1 Specifying requirements
	5.3.2 Developing a logical model
	5.3.3 Developing a physical model

	6 Naming conventions
	6.1 General
	6.1.1 Case sensitivity
	6.1.2 Length of names
	6.1.3 Reserved words

	6.2 SDL and MSC
	6.2.1 Use of non-significant characters
	6.2.2 Multiple use of names
	6.2.3 Making names meaningful
	6.2.3.1 Block, process and instance names
	6.2.3.2 Procedure, operator and method names
	6.2.3.3 Signal names
	6.2.3.4 Signal list and interface names
	6.2.3.5 SDL state names
	6.2.3.6 Names of variables and constants
	6.2.3.7 Timers

	6.3 Data types

	7 Presentation and layout of diagrams
	7.1 The general flow of behaviour across a page
	7.2 Behaviour covering more than one page
	7.2.1 SDL behaviour diagrams
	7.2.2 Definitions in behaviour diagrams
	7.2.3 UML activity diagrams

	7.3 Text extension symbols
	7.4 Alignment and orientation of symbols
	7.4.1 Alignment
	7.4.2 Orientation

	7.5 Structuring behaviour descriptions
	7.5.1 Basic structuring principles
	7.5.2 Structuring using procedures and operations
	7.5.3 Emphasizing the difference between normal and exceptional behaviour flows

	8 Using procedures, operations and macros
	8.1 Procedures
	8.1.1 Using procedures to replace informal tasks
	8.1.2 Procedure signature (parameters and returned values)
	8.1.3 Procedure body
	8.1.4 Avoiding side-effects
	8.1.5 Naming of procedures

	8.2 Operations
	8.3 Using macros

	9 Using decisions
	9.1 Decisions
	9.1.1 Naming of identifiers used with decisions
	9.1.2 Using decisions to structure a specification
	9.1.3 Use of text strings in decisions
	9.1.4 Use of enumerated types in decisions
	9.1.4.1 Use of ELSE

	9.1.5 Using SYNTYPES to limit the range of values in decisions
	9.1.6 Use of symbolic names in decision outcomes
	9.1.7 Use of range expressions in decisions
	9.1.8 Use of Procedures in Decisions
	9.1.9 Use of ANY in decisions

	9.2 Use of options rather than decisions
	9.3 Flow control statements

	10 System structure, communication and addressing
	10.1 System structure
	10.2 Minimising the SDL model
	10.3 Avoiding repetition by using SDL types
	10.3.1 Defining the same behaviour at both ends of a protocol
	10.3.2 Static instances to represent repeated functionality

	10.4 Interfaces
	10.5 Diagrams showing relationships
	10.5.1 Use of associations between class symbols
	10.5.1.1 Use of a class symbol for an INTERFACE definition

	10.6 Structure diagrams using interfaces between agents
	10.7 Communication and Addressing
	10.7.1 Use of interface and SIGNALLIST definitions
	10.7.2 Indicating the use of signals in inputs and outputs
	10.7.3 Directing messages to the right process
	10.7.4 Differentiating messages
	10.7.5 Multiple outputs
	10.7.6 Transitions triggered by a set of signals

	10.8 Gates and implicit channels
	10.9 Other structuring mechanisms
	10.9.1 Processes within a process
	10.9.2 Shared data
	10.9.3 Hiding and re-using parts of a state
	10.9.4 Using packages
	10.9.5 Exception handling

	11 Specification and use of data
	11.1 Specifying messages
	11.1.1 Structuring messages
	11.1.2 Ordering message parameters
	11.1.3 Transposing other message formats

	11.2 Specifying data that is internal to the SDL model
	11.2.1 Use of symbolic names
	11.2.1.1 Using data TYPE and SYNTYPE
	11.2.1.1.1 Using OBJECT TYPE

	12 Using Message Sequence Charts (MSC)
	12.1 Introduction
	12.2 Relationship between MSC and SDL
	12.3 Presentation and layout
	12.3.1 Annotations

	12.4 Naming and scope
	12.5 MSC document
	12.6 Structuring
	12.6.1 Architecture
	12.6.1.1 Instance
	12.6.1.2 Instance decomposition
	12.6.1.3 Dynamic instances
	12.6.1.4 Environment

	12.6.2 Behaviour
	12.6.2.1 High-level MSC (HMSC)
	12.6.2.2 MSC reference in basic MSC
	12.6.2.3 Inline expression

	12.7 Data
	12.8 Message
	12.8.1 Incomplete messages

	12.9 Condition
	12.10 Action
	12.11 Timer
	12.12 Control Flow
	12.13 Time
	12.14 General ordering and coregion
	12.15 Relationship between MSC and UML Sequence Diagrams

	Annex A (informative): Reserved words
	A.1 SDL
	A.1.1 Keywords
	A.1.2 Predefined words

	A.2 MSC
	A.3 ASN.1
	A.4 UML

	Annex B (informative): Summary of guidelines
	Annex C (informative): Bibliography
	History

