

ETSI EG 202 106 V2.1.1 (2003-11)

ETSI Guide

Methods for Testing and Specification (MTS);
Guidelines for the use of formal SDL as a descriptive tool

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 2

Reference
REG/MTS-00072

Keywords
ASN.1, methodology, MSC, SDL, testing, UML

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, send your comment to:
editor@etsi.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2003.

All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
mailto:editor@etsi.org

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 3

Contents

Intellectual Property Rights ..6

Foreword...6

1 Scope ..7

2 References ..7

3 Definitions and abbreviations...8
3.1 Definitions..8
3.2 Abbreviations ...8

4 Introduction ..9

5 Using specification languages in protocol standards..10
5.1 Introduction ..10
5.2 Layered protocols ...10
5.3 Developing a protocol specification ...10
5.3.1 Specifying requirements ...11
5.3.2 Developing a logical model ..11
5.3.3 Developing a physical model..11

6 Naming conventions...13
6.1 General ...13
6.1.1 Case sensitivity ...15
6.1.2 Length of names ...15
6.1.3 Reserved words...15
6.2 SDL and MSC ..16
6.2.1 Use of non-significant characters..16
6.2.2 Multiple use of names...16
6.2.3 Making names meaningful..17
6.2.3.1 Block, process and instance names ...17
6.2.3.2 Procedure, operator and method names ..17
6.2.3.3 Signal names ...18
6.2.3.4 Signal list and interface names..18
6.2.3.5 SDL state names..18
6.2.3.6 Names of variables and constants ...19
6.2.3.7 Timers ...19
6.3 Data types...19

7 Presentation and layout of diagrams ..19
7.1 The general flow of behaviour across a page ...20
7.2 Behaviour covering more than one page ..21
7.2.1 SDL behaviour diagrams ..21
7.2.2 Definitions in behaviour diagrams..25
7.2.3 UML activity diagrams...26
7.3 Text extension symbols ..27
7.4 Alignment and orientation of symbols ...27
7.4.1 Alignment ...27
7.4.2 Orientation ..29
7.5 Structuring behaviour descriptions...29
7.5.1 Basic structuring principles ..29
7.5.2 Structuring using procedures and operations ..30
7.5.3 Emphasizing the difference between normal and exceptional behaviour flows ...30

8 Using procedures, operations and macros ..31
8.1 Procedures ..31
8.1.1 Using procedures to replace informal tasks ..33
8.1.2 Procedure signature (parameters and returned values) ...34
8.1.3 Procedure body ...36

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 4

8.1.4 Avoiding side-effects ..39
8.1.5 Naming of procedures...40
8.2 Operations ..41
8.3 Using macros..45

9 Using decisions ..46
9.1 Decisions ..47
9.1.1 Naming of identifiers used with decisions ..47
9.1.2 Using decisions to structure a specification..47
9.1.3 Use of text strings in decisions ...47
9.1.4 Use of enumerated types in decisions ...48
9.1.4.1 Use of ELSE..49
9.1.5 Using SYNTYPES to limit the range of values in decisions ..49
9.1.6 Use of symbolic names in decision outcomes...49
9.1.7 Use of range expressions in decisions ..50
9.1.8 Use of Procedures in Decisions ..51
9.1.9 Use of ANY in decisions ..53
9.2 Use of options rather than decisions...53
9.3 Flow control statements..54

10 System structure, communication and addressing..56
10.1 System structure ...56
10.2 Minimising the SDL model ..57
10.3 Avoiding repetition by using SDL types ..58
10.3.1 Defining the same behaviour at both ends of a protocol...59
10.3.2 Static instances to represent repeated functionality ..59
10.4 Interfaces ..60
10.5 Diagrams showing relationships...61
10.5.1 Use of associations between class symbols ..62
10.5.1.1 Use of a class symbol for an INTERFACE definition ..63
10.6 Structure diagrams using interfaces between agents ..63
10.7 Communication and Addressing ..64
10.7.1 Use of interface and SIGNALLIST definitions ..64
10.7.2 Indicating the use of signals in inputs and outputs ...65
10.7.3 Directing messages to the right process..65
10.7.4 Differentiating messages...66
10.7.5 Multiple outputs..66
10.7.6 Transitions triggered by a set of signals..67
10.8 Gates and implicit channels..67
10.9 Other structuring mechanisms..68
10.9.1 Processes within a process ..68
10.9.2 Shared data..68
10.9.3 Hiding and re-using parts of a state ..68
10.9.4 Using packages ...70
10.9.5 Exception handling ...70

11 Specification and use of data..71
11.1 Specifying messages...71
11.1.1 Structuring messages ..72
11.1.2 Ordering message parameters ...73
11.1.3 Transposing other message formats..74
11.2 Specifying data that is internal to the SDL model ..74
11.2.1 Use of symbolic names ...74
11.2.1.1 Using data TYPE and SYNTYPE...75
11.2.1.1.1 Using OBJECT TYPE...76

12 Using Message Sequence Charts (MSC)..76
12.1 Introduction ..76
12.2 Relationship between MSC and SDL...76
12.3 Presentation and layout ..77
12.3.1 Annotations...77
12.4 Naming and scope ..78
12.5 MSC document...78

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 5

12.6 Structuring..79
12.6.1 Architecture ..79
12.6.1.1 Instance ...79
12.6.1.2 Instance decomposition...80
12.6.1.3 Dynamic instances ..80
12.6.1.4 Environment..80
12.6.2 Behaviour..81
12.6.2.1 High-level MSC (HMSC) ...82
12.6.2.2 MSC reference in basic MSC..84
12.6.2.3 Inline expression ...85
12.7 Data ..86
12.8 Message..87
12.8.1 Incomplete messages ..89
12.9 Condition..89
12.10 Action...90
12.11 Timer ..91
12.12 Control Flow ..92
12.13 Time ...93
12.14 General ordering and coregion ...94
12.15 Relationship between MSC and UML Sequence Diagrams...95

Annex A (informative): Reserved words ..96

A.1 SDL ..96
A.1.1 Keywords ...96
A.1.2 Predefined words..97

A.2 MSC ...97

A.3 ASN.1...98

A.4 UML...98

Annex B (informative): Summary of guidelines ..99

Annex C (informative): Bibliography...103

History ..104

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 6

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This ETSI Guide (EG) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).

http://webapp.etsi.org/IPR/home.asp

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 7

1 Scope
The present document establishes a set of guidelines for the formal use of Specification and Description Language
(SDL) for descriptive, rather than detailed design, purposes. It also provides some guidance on the use of Message
Sequence Charts (MSC), Abstract Syntax Notation 1 (ASN.1) and the Unified Modeling Language (UML) when used
in conjunction with SDL. The objective of the guidelines is to provide assistance to rapporteurs of protocol standards so
that the SDL that appears in ETSI deliverables is formally expressed, easy to read and understand and at a level of detail
consistent with other standards. The present document applies to all standards that make use of SDL to specify
protocols, services or any other type of behaviour.

Users of the present document are assumed to have a working knowledge of SDL and, where necessary, MSC, ASN.1
and UML. It should not be considered to be a tutorial in any of these notations and should be read in conjunction with
EG 201 383 [1], EG 201 015 [2] and EG 201 872 [3].

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication and/or edition number or version number) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

[1] ETSI EG 201 383 (V1.1.1): "Methods for Testing and Specification (MTS); Use of SDL in ETSI
deliverables; Guidelines for facilitating validation and the development of conformance tests".

[2] ETSI EG 201 015 (V1.2.1): "Methods for Testing and Specification (MTS); Specification of
protocols and services; Validation methodology for standards using Specification and Description
Language (SDL); Handbook".

[3] ETSI EG 201 872 (V1.2.1): "Methods for Testing and Specification (MTS); Methodological
approach to the use of object-orientation in the standards making process".

[4] ITU-T Recommendation Z.100: "Specification and Description Language (SDL)".

[5] ITU-T Recommendation Z.105: "SDL combined with ASN.1 modules (SDL/ASN.1)".

[6] Void.

[7] ITU-T Recommendation Z.120 Corrigendum 1: "Messages sequence chart (MSC)".

[8] ITU-T Recommendation X.680: "Information technology - Abstract Syntax Notation One
(ASN.1): Specification of basic notation".

[9] ITU-T Recommendation X.681: "Information technology - Abstract Syntax Notation One
(ASN.1): Information object specification".

[10] ITU-T Recommendation X.682: "Information technology - Abstract Syntax Notation One
(ASN.1): Constraint specification".

[11] ITU-T Recommendation X.683: "Information technology - Abstract Syntax Notation One
(ASN.1): Parameterization of ASN.1 specifications".

http://docbox.etsi.org/Reference

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 8

[12] ITU-T Recommendation X.690: "Information technology - ASN.1 encoding Rules: Specification
of Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished Encoding
Rules (DER)".

[13] ITU-T Recommendation X.691: "Information technology - ASN.1 encoding rules: Specification of
Packed Encoding Rules (PER)".

[14] ITU-T Recommendation X.692: "Information technology - ASN.1 encoding rules - Specification
of Encoding Control Notation (ECN)".

[15] ITU-T Recommendation I.130: "Method for the characterization of telecommunication services
supported by an ISDN and network capabilities of an ISDN".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

data type: set of data values with common characteristics

NOTE: Equivalent to the ITU-T Recommendation Z.100 [4] term sort.

implementation option: statement in a standard that may or may not be supported in an implementation

normative interface: physical or software interface of a product on which requirements are imposed by a standard

polymorphic: the ability of an operation (SDL method or operator) to have its behaviour specified by a descendant
object type

validation: process, with associated methods, procedures and tools, by which an evaluation is made that a standard can
be fully implemented, conforms to rules for standards, satisfies the purpose expressed in the record of requirements on
which the standard is based and that an implementation that conforms to the standard has the functionality expressed in
the record of requirements on which the standard is based

validation model: detailed version of a specification, possibly including parts of its environment, that is used to
perform formal validation

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

ASN.1 Abstract Syntax Notation No. 1
BER Basic Encoding Rules
ECN Encoding Control Notation
HMSC High-level Message Sequence Chart
MSC Message Sequence Chart
PER Packed Encoding Rules
Pid Process identity
SAP Service Access Point
SDL Specification and Description Language
UML Unified Modeling Language

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 9

4 Introduction
The ITU-T Specification and Description Language (SDL) defined in ITU-T Recommendation Z.100 [4] is a powerful
tool for specifying the essential requirements of standardized protocols or services. The level of formality with which
the SDL in a standard is expressed can depend on a large number of factors such as the size and complexity of the
system to be standardized and the skills and experience of the standards writers. The specification of a protocol or
service as a complete formal model enables the validation of the standard before approval and publication. However,
well-constructed, formal SDL has a valuable role to play in providing a simple illustration of the process-related aspects
of a standardized system.

SDL is most often found in protocol standards with some associated ASN.1 and MSC. Additionally, as the language
specifications converge, SDL is also likely to be used in conjunction with UML in standards. It is, therefore, sensible to
consider the relationships between all of these languages and notations when offering guidelines on SDL. The present
document is concerned primarily with the development of easy-to-read SDL but also provides some guidance on the use
of ASN.1, MSC and UML where this overlaps with the use of SDL.

NOTE: Although in the strictest sense SDL, MSC and UML are considered to be languages while ASN.1 is a
notation, the terms "language" and "notation" are used interchangeably throughout the present document.

In order to gain the maximum benefit from the use of descriptive SDL, it is necessary for a consistent approach to be
taken in its specification by all rapporteurs. In the context of the present document, the term "descriptive SDL" can be
taken to mean SDL which is:

• formally expressed:

- uses only constructs and symbols that are defined in ITU-T Recommendations Z.100 [4] and Z.105 [5];

• complete:

- is specified as a full model with system, block, process and procedure diagrams as necessary;

- has a comprehensive data specification using SDL data or, preferably, ASN.1;

- uses "correct" SDL;

- is not necessarily a simulation or validation model;

• easy to read and understand:

- uses meaningful names and identifiers;

- the model structure complements the specification;

- has an open layout which requires a minimum of effort to follow;

- the "how" is hidden from the "what";

- complex programming structures are avoided;

- extensive comments annotate the model;

• at a level of detail consistent with other standards:

- is not over-engineered;

- is not an implementation model;

- does not constrain implementations to methods and techniques which are beyond the scope of the
standard.

By following the set of simple guidelines presented in the present document, it will be possible for the following
benefits to be realized:

- comprehension of the specification can be improved;

- ambiguity can be avoided in the translation of the descriptive SDL into a validation model.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 10

Achieving consistency in the presentation and level of detail specified across a wide range of standards is one of the
keys to maintaining the perceived quality of ETSI's products.

The guidelines for the use of SDL for descriptive purposes are grouped in the present document according to the
following broad classifications:

- naming conventions;

- presentation and layout of SDL processes;

- the use of procedures, operations and macros;

- the use of decisions;

- system structure, communications and addressing;

- the specification and use of data;

- the use of Message Sequence Charts (MSC) in association with SDL.

Each of the guidelines is highlighted within the document in bold and italic text. They are all collected together in
tabular form in Annex B.

5 Using specification languages in protocol standards

5.1 Introduction
This clause gives some consideration to the process of standardizing communication protocols so that guidance can be
given on where SDL, ASN.1, MSC and UML can be used effectively.

5.2 Layered protocols
There are numerous approaches to the design of communications protocols, each of which is valid in the situation that it
is used. Probably the most well known and well used is the ISO layered model or a derivative of it where a protocol
system is segmented into distinct logical layers with distinct responsibilities.

The communication between peer layers in this logical model never takes place directly but is achieved through the
services of the lower layer. However, this peer-level communication is often specified in a standard without
consideration of the signaling between layers. The interface between two adjacent layers is usually called the Service
Access Point (SAP) although other terms such as user access and network access are also used. Protocol standards will,
in most cases, be considerably simpler if they are restricted either to horizontal communication (peer-to-peer) or vertical
communication (inter-layer). Mixing the two can lead to a confusing specification which is difficult to understand.

5.3 Developing a protocol specification
For many years, protocol standards have been prepared using the three-stage process described in
ITU-T Recommendation I.130 [15]. Although the detailed practices specified in the present document might now be
considered to be out of date and its use is not as widespread as it once was, the underlying method upon which it is
based is still relevant as good engineering design practice. Simply put, this is:

1) specify requirements from the user's perspective;

2) develop a logical model to meet those requirements;

3) develop a physical specification of the protocol.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 11

5.3.1 Specifying requirements

Specifying a protocol without first evaluating what it is intended to achieve and what constraints are to be applied to it
will almost certainly end in a poor specification. These requirements can easily be expressed using free text and some
informal diagrams but the use of UML for this purpose (as described in EG 201 872 [3]) means that this information
can be checked by automatic tools and used as input to the later stages of specification.

At this stage of the specification, there should be no need to consider the possible physical architecture of any system
implementing the protocol. Requirements should be expressed, as far as possible, entirely from the user's perspective
(although the "user" may be a terminal or network application acting on behalf of a human user).

5.3.2 Developing a logical model

Before considering the physical specification of a protocol, there are benefits to be gained by specifying a model based
on logical blocks so that the flow of information necessary for meeting the specified requirements can be defined
without concern for the detailed format that such information should take. The identification of possible normative
interfaces between blocks is also simpler without the constraints imposed by a specific physical architecture.

The overlap between UML and both SDL2000 and MSC2000 is such that all of these languages are suitable for this
level of specification. In fact, it is unlikely that models developed in either UML or SDL2000 with MSCs would be
appreciably different.

Once the logical model is complete, it is necessary to specify a physical model upon which "real" implementations of
the protocol standard can be based. This model should not, in most cases, be a detailed implementation model but
should be constrained to specify the minimum protocol requirements to guarantee interworking between modules from
different suppliers. A good first step towards this physical model is to define a set of legitimate scenarios for the
distribution of the logical blocks within a set of physical entities. Textual tables have traditionally been used quite
effectively for this purpose but UML deployment diagrams can provide a graphical means of presenting these
requirements.

5.3.3 Developing a physical model

If systems implementing a standardized protocol are to interwork without problems, it is necessary to specify the
detailed content and format of signals between physical entities and the temporal relationships that must exist between
these signals. For the present document to be complete and accurate, it may be necessary to describe the behaviour of
the physical entities which make up the protocol system.

ASN.1 is generally accepted as the notation to be used within protocol standards for the definition of signal data
structures. Although it is not a particularly intuitive notation to use, it has the significant benefit that there are a number
of standardized sets of rules (for example, Basic Encoding Rules - BER [12] and Packed Encoding Rules - PER [13])
for encoding ASN.1 structures into "concrete" data items with more or less efficiency. In those cases where even PER
does not produce a compact enough encoding, Encoding Control Notation (ECN) specified in
ITU-T Recommendation X.692 [14] enables users to define and use their own encoding rules in a standardized form. A
further benefit of using ASN.1 is that ITU-T Recommendation Z.105 [5] specifies exactly how ASN.1 is used in
conjunction with SDL so that data items defined in an ASN.1 module can be used directly in the SDL associated with
that module.

The following simple example uses ASN.1 to specify the structure of an address which comprises a length parameter
and the address value itself

 Address ::= SEQUENCE { length BIT STRING(SIZE(8)),
 value OCTET STRING }

Message Sequence Charts (MSCs) are an ideal notation for describing signal flows and a simple example is shown in
figure 1.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 12

CalledUser Destinat ionNetwork OriginatingNetwork CallingUser

Connected

No_Connection

msc Successful_Setup

CallReqestAck
CONNECTED

CallAnswer
ALERTING

CallAlerting

IncomingCall
CALL_PROCEEDING

SETUP

CallRequest

Figure 1: Example of a simple MSC

In anything but the simplest protocol, it is not possible to show all of the possible sequences of signals. It is, therefore,
quite acceptable to use MSCs to illustrate only a representative sample of sequences. These examples should specify a
reasonable range of successful and unsuccessful situations to enable readers to make an informed judgement of what the
flows would be in other unspecified scenarios.

High level MSC (HMSC) diagrams can be used to provide an overview of the relationships between detailed sequences
of signals in more complex scenarios. The simple example in figure 2 shows how an HMSC can be used to segregate
normal behaviour from exceptional behaviour.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 13

Normal
Behaviour

Exceptional
Behaviour

MSC SetupHMSC 1(1)

when Idle

Sucessful_Setup SetupFail_IllegalNumber SetupFail_NoResponse

IdleConnected

msc

Figure 2: Example HSMC

In order to complete the picture of possible signal sequences, the behaviour of each physical entity needs to be specified
and SDL is an ideal graphical language for this purpose. By using SDL's language features to specify system
architecture, communication paths, signals and behaviour and using ASN.1 to define signal parameter structures, it is
possible to build a complete model. This can then be used to improve the quality of the overall specification by
simulating and testing a range of possible scenarios.

The present document offers a number of guidelines on the use of SDL with ASN.1, MSC and UML to produce
protocol standards that are easy to read and understand and which unambiguously express the requirements for an
implementation.

6 Naming conventions

6.1 General
In common with most modern programming languages, SDL, MSC, ASN.1 and UML permit the use of alphanumeric
names to identify individual entities within a specification. Examples of entities that can be identified in this way are:

• SDL:

- blocks;

- procedures;

- signals;

- variables and constants;

• MSC:

- instances;

- messages;

- timers;

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 14

- conditions;

• ASN.1:

- type references;

- identifiers;

- value references;

- module references;

• UML:

- classes and objects;

- states;

- events;

- attributes.

It is likely that protocol standards will incorporate SDL, MSC, ASN.1 or UML specifications of structure and
behaviour. Frequently, two or more of these are used in combination within the same standard and in these cases it is
certain that some entities defined in one notation will also be used in another. Examples of these are:

- ASN.1 data types which are used by SDL;

- SDL processes which are mapped to MSC instances.

Although the lexical rules in each notation are similar, they are by no means identical. Table 1 identifies the most
significant differences in the construction of identifiers within these four languages and notations.

Table 1: Significant differences in the lexical rules of SDL, MSC, ASN.1 and UML

Notation Significant differences
SDL - name may be hyphenated over more than one line using

the underscore ("_") character
- names may contain non-printing characters (which are

ignored) only if preceded by "_" (which is also ignored)
- names may contain "_" but not "-"

MSC Same as SDL
ASN.1 - names are restricted to a single line

- names may only contain printing characters
- names may contain"-" but not "_"

UML - names are restricted to a single line
- names may only contain printing characters
- the use of "_" and "-" in names is not specified and are

most likely to be tool dependant
NOTE: In practice, the lexical rules of UML are likely to

vary according to the tool used and the target
software language)

The choice of names is likely to be affected by the individual application but (1)a naming convention that can be
applied consistently to each notation used should be chosen. Taking this approach will help to avoid ambiguities when
names need to be modified to comply with conflicting lexical rules in each notation used. Even in those instances where
it is planned to use only one notation, consideration should also be given to the rules of the others when specifying a
naming convention as one or more of these may be used to augment the specification at a later stage.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 15

One of the most common such conflicts occurs between ASN.1 and SDL where the use of dash ("-") characters is
permitted in ASN.1 but not in SDL while underscores ("_") may be used in SDL but not in ASN.1.
ITU-T Recommendation Z.105 [5] specifies that a dash character within an ASN.1 name is mapped to an underscore
when it is converted to SDL. This is a reasonable approach but it still leaves a visible difference between an ASN.1 type
name and its corresponding SDL type. For example:

Setup-contents in ASN.1 is equivalent to Setup_contents in SDL.

(2)While it is acceptable to use the underscore character to delineate words within most SDL entity names, it is
advisable to avoid the use of the dash character in ASN.1 types and values in order to avoid conflicts and
misinterpretation in the associated SDL.

6.1.1 Case sensitivity

SDL, MSC, ASN.1 and UML are all sensitive to the case of characters within names. As an example, the name ABC is
not the same as AbC or Abc. The ASN.1 syntax goes further by specifying that names beginning with an upper-case
letter should be interpreted as type references and that those beginning with lower-case letters should be interpreted as
value references or identifiers such as information elements in a SEQUENCE or CHOICE. Although the case of the
first character of a name does not have the same syntactical significance in either SDL or MSC, it is a useful way of
distinguishing between types and values, particularly when used in conjunction with ASN.1. However, (3)the general
use of names which differ only in character case to distinguish between entities should be avoided.

Although errors are likely to be detected by automatic syntax checking tools, (4)care should be taken to ensure the
consistent use of character case within names throughout an ASN.1, SDL, MSC or UML specification.

The capitalization of the first character of each word within a name is an acceptable method of delineation between the
component parts of the name.

EXAMPLE: The procedure name, DeliverMessageContents can easily be interpreted to imply that the purpose
of the procedure is to deliver the message contents.

Although it works well in many cases, this method can result in names that are quite difficult to read if they contain
acronyms or larger numbers of short words. Examples of these are:

InvokeCCBSSupplementaryService;
AddOneToTheFirstItemOfOldData.

6.1.2 Length of names

The syntaxes of SDL, MSC, ASN.1 and UML place no restrictions on the number of characters that may be included in
names although, in practice, there may be limits imposed by the software tools used. It is also worth noting that very
long names can often be difficult to read. It is not possible impose a strict rule on the length of names but, as a general
guideline, (5)names of less than 6 characters may be too cryptic and names of more than 30 characters may be too
difficult to read and assimilate.

6.1.3 Reserved words

Although SDL, MSC, ASN.1 and UML all permit great flexibility in the use of names, there are certain reserved words
which are keywords of the languages themselves and which, consequently, cannot be used as names. Lists of these
reserved words can be found in annex A.

NOTE: SDL keywords may be either all upper-case or all lower-case. Keywords using mixed case are not
considered to be reserved words. For example, both "procedure" and "PROCEDURE" are SDL reserved
words but "Procedure" is not.

The use of reserved words from one notation can be legitimately used as names within a specification based upon
another but to avoid any conflict across specifications using multiple notations, (6)the reserved words of all notations
used within a standard should be avoided as defined names in each of the individual parts.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 16

6.2 SDL and MSC

6.2.1 Use of non-significant characters

It is permissible to split a name across more than one line by introducing an underscore followed by a sequence of
spaces and/or the carriage-return and line-feed control characters. So, the procedure name DeliverMessageContents in
the example above could also be expressed as:

Deliver_
Message_
Contents

This is a very convenient notation when trying to fit a long name into a graphical symbol, thus:

Deliver_
Message_
Content

It is worth noting that the underscore character is only insignificant when used as a hyphenation symbol and that the
name:

DeliverMessage

is not the same as:

Deliver_Message

although it is identical to

 Deliver_
Message

When a name using underscores to separate words is wrapped over more than one line, it is necessary to include two
underscore characters where the hyphenation occurs, thus:

 Deliver_
_Message

(7)Readability is improved if the same convention for separating words within names is used throughout a
specification. The one case where a combination of methods is recommended is in the use of acronyms within names
that use capitalisation as the method of separation. An underscore on each side of the acronym clearly delineates it from
the remainder of the name, thus:

Invoke_CCBS_SupplementaryService

(8)In most cases an underscore character between each word removes any possibility of misinterpretation and this is
the approach that is recommended.

6.2.2 Multiple use of names

SDL permits entities belonging to different classes to be given the same name. As an example, it is syntactically correct
for a process within a block named Dialling also to be given the name Dialling (see figure 3). In addition, because of the
scoping rules of the language, it would be possible for a process within another block in the same system to be named
Dialling.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 17

BLOCK Dialling 1(1)

Dialling
User_
_Channel

USER

[Dialling_Response] [User_Dialling]

INTERNAL

[Dialled_Numbers] [Analysis_Response]

Internal_
_Link

Figure 3: Example of a block and a process with the same name

In many protocol standards, particularly those specifying supplementary services, the system comprises a small number
of blocks, each of which contains only one process. In such situations, the use of the same name for the block and for its
single process is valid but, as SDL allows it, a better approach may be to omit the block altogether as shown in
clause 10.

(9)In more complex models where each block is made up of a number of processes, the use of the same name for a
block and one of its constituent processes is likely to cause confusion and should be avoided.

Similar problems can also exist in the re-use of single names for multiple entities. For example, it is possible to have the
same name for a signal list and for one of its constituent signals. As a general guideline, (10)the use of a single name for
multiple purposes should be avoided wherever possible.

6.2.3 Making names meaningful

The freedom and flexibility allowed in the construction of names can be used to great benefit in improving the
readability of a specification. If there is an entity whose function is to represent an alarm clock then it can be called
Alarm_Clock and there are no constraints to force the use of a more cryptic name such as Alm_Clk. However, this
freedom can be abused and it would be quite legitimate for the alarm clock to be given the name
The_Thing_Beside_The_Bed_That_Makes_A_Loud_Noise_In_The_Morning which is equally as unacceptable as the
cryptic style.

Although it can appear useful during the development of a protocol standard, (11)the addition of project-specific
prefixes or suffixes can make meaningful names appear cryptic and should be used with great care.

Apart from the general recommendations above, certain specific guidelines apply to each group of identifiable entities.

6.2.3.1 Block, process and instance names

(12)By giving blocks, processes and MSC instances names that represent the overall role that they play within the
system, it is possible to distinguish process names from procedure names. If carefully chosen, they can help to link
the SDL and MSC back to the corresponding clauses in the text description. Examples are:

originating_PINX;
Scenario_Management;
Functional_Entity_FE2;
alarm_clock.

As can be seen, these names are all nouns which indicate the general function of the process.

6.2.3.2 Procedure, operator and method names

Procedures, operators and methods (SDL operations) are key elements in breaking a complex process down into
meaningful layers (see clause 8.1). For this to be effective, (13)the name chosen for an SDL operation should indicate
the specific action taken by the operation. Examples are:

Extract_Calling_Number_From_SETUP;
get_user_profile_from_database;
Send_Response;

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 18

ring_alarm_bell.

The names chosen here are all verb phrases indicating the specific activity to be carried out by the operation.

6.2.3.3 Signal names

There are often constraints on the length of signal names as they usually have to appear in quite small spaces within
SDL symbols. It is, therefore, more difficult to arrive at meaningful names for them. However, poor naming of signals
can make SDL and MSC very difficult to read, even when most other aspects are well presented. For example, the name
Rep_Sgl_Err could easily be interpreted to mean:

Report Signal Error;

Report Single Error;

Repeat Signal Error;

Repeat Single Error.

The obvious approach is to express the name in full as, for example, Report_Signal_Error but this, again, is quite
long. The problem can be overcome by using unambiguous abbreviations or abbreviations that are in common use. In
the example above, Err is generally accepted as meaning "Error". Also, changing Sgl to Sig would make it much clearer
that it was an abbreviation for "Signal" not "Single". (14)If possible, it is advisable to leave at least one significant word
in the name unabbreviated as this can help to provide the context for interpreting the remaining abbreviations. So
the example above would be acceptable if expressed as Report_Sig_Err.

6.2.3.4 Signal list and interface names

SDL provides two mechanisms for collecting signals together into named logical groups. These are signallists and
interfaces as described in clause 10. For the purpose of defining names, these two can be treated identically.

In order to improve clarity, it is often advisable to group signals into interfaces or signallists according to their
capabilities and, consequently,(15)the name chosen for an interface or signal list should indicate the general function
of the grouped signals, for example:

UNI_Messages;
Mobility_Management;
user_input.

As an alternative and particularly in simple specifications (16)where all signals between one block or process and
another can be logically grouped together, signal list names can be chosen to indicate the origin and the destination
of the associated signals. Examples of this approach are as follows:

home_PINX_to_visitor_PINX;
HLRA_to_HLRB;
localExch_to_user;
between_AccessManagement_and_CallControl.

6.2.3.5 SDL state names

In most protocol standards, the SDL specification includes a large number of states and it is often tempting to assign
cryptic and sequential names such as state_5 or N3. Taking the time to formulate meaningful names for each state can
add significantly to the readability of an SDL specification.

(17)A state name should clearly and concisely reflect the status of the process while in that state. Examples of such
names are:

Idle;
Wait_For_SETUP_Response;
Timing_Signal_Delay.

(18)If it is important to number states then this should be done in conjunction with meaningful names such as:

Releasing_01;
Timing_Response_4.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 19

6.2.3.6 Names of variables and constants

It is more difficult to specify some simple guidelines for the construction of names for variables and constants as they
have widespread and diverse uses. It is still important to ensure that the name is meaningful in the context of the SDL
specification. (19)The name chosen for a variable should indicate in general terms what it should be used for. For
example:

SETUP_message_contents;
User_Input;
Alarm_Time.

(20)Names used to identify constants can be more specific by indicating the actual value assigned to the constant. For
example:

User_Not_Known;
Twenty_Five;
Characters_A_To_Z.

6.2.3.7 Timers

Although the use of meaningful timer names, such as Response_Sanity_Timer, would improve the overall
readability of a specification, it has become accepted practice to use the shorthand T1, T2, T3 etc. for timers within
standards for protocols. To avoid confusion, the Tn notation should be used when naming timers unless an opportunity
arises to use extended names in a completely new project where the use of the shorthand is not already established.

6.3 Data types
The definition of the ASN.1 notation, ITU-T Recommendation X.680 [8], specifies that type references must begin with
an upper-case character and that value references and identifiers must begin with a lower-case character. When using
ASN.1 in protocol standards, it has become the convention that a value reference uses the same name as its associated
type reference (except where there are more than one value references derived from the same type reference) but that
one is distinguished from the other by the case of its first character, thus:

-- Example of the use of identifiers with type references
 Dog ::= SEQUENCE {
 breed Breed,
 name Name }

 Breed ::= ENUMERATED {
 poodle,
 spaniel,
 alsation,
 boxer }

 Name ::= PrintableString

-- Example of the use of a value reference with a type reference
 dogID Name ::= "Rover"

For readability the name breed is preferable to bREED, even though the latter is, strictly speaking, permissible.

Although all data types associated with normative signals will usually be defined in ASN.1, other types can be specified
using SDL's own data language features. For the sake of consistency with ASN.1, (21)the names of SDL data types
should be capitalized while the names of literals and synonyms should begin with a lower-case character.

7 Presentation and layout of diagrams
The syntaxes of both SDL and UML allows great freedom in the presentation and layout of both text and graphical
symbols. Good presentation can considerably improve the readability of a specification whereas bad presentation can
render it unintelligible. It is also worth noting that a single error resulting from the misunderstanding of a poorly
presented diagram can be much more costly than all the pages of paper saved when packing symbols and diagrams
tightly.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 20

It is in SDL behaviour descriptions and in UML activity diagrams that presentation and layout have the most impact and
the following aspects should be considered within a standard:

- the general flow of behaviour across a page;

- the spreading of diagrams over more than one page;

- the use of text extension symbols (in SDL);

- the alignment and orientation of symbols;

- the use of swimlanes (in UML - see EG 201 872 [3]).

7.1 The general flow of behaviour across a page
SDL and UML both allow the lines connecting symbols to flow in any direction across a page. As an example, the
process shown in figure 4 is legal SDL but is quite difficult to read.

PROCESS Flow_Example_1 2(4)

idle SETUP
(SetupInfo)

Analyse_Input
(Setup_Info,
Status, Cause)

Status RELEASE_
_REJECT idle

FAILURE_
_RESPONSE
(Cause)

idle RELEASE SETUP
(SetupInfo) idle

Failure Success

Figure 4: Example of poor layout of legal SDL

The readability of this process is greatly improved simply by laying it out in a "top-to-bottom" form, as in figure 5.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 21

PROCESS Flow_Example_2 2(5)

idle

RELEASE

RELEASE_
_REJECT

idle

SETUP
(SetupInfo)

Analyse_Input
(Setup_Info,
Status, Cause)

Status

FAILURE_
_RESPONSE
(Cause)

idle

SETUP
(SetupInfo)

idle

Failure Success

Figure 5: Example of improved layout

The orientation of flow between symbols in SDL and, to a lesser extent, in UML is naturally vertical and it is, therefore,
easier to read diagrams that follow this convention. Thus, (22)the general flow of SDL behaviour diagrams and UML
statechart and activity diagrams should be from the top of the page towards the bottom. However, in some UML
instances the flow may be better expressed using a left-to-right flow across the page.

Even in class diagrams and others where there is no "flow" expressed, readability can be improved if there is a general
top-to-bottom layout on the page based on hierarchy or some other pertinent characteristic.

7.2 Behaviour covering more than one page

7.2.1 SDL behaviour diagrams

In most cases within standards it is not possible to constrain SDL process descriptions to one page. Only two options
exist for breaking a diagram across a page boundary without affecting the readability. These are:

- using the NEXTSTATE symbol;

- using a connector symbol.

If it can be accommodated within the general structure of a description, (23)the flow on a page of an SDL process
should end in a NEXTSTATE symbol rather than a connector as shown in figure 6 and figure 7. In general, this
makes specifications easier to read. In addition, (24)states that are entered from NEXTSTATE symbols on other pages
should always be placed at the top of the page.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 22

PROCESS Page_example_1 1(2)

DCL
Action RequestType;
TimeNow TimeType;
AckStatus AckType;

IdleState

GetCurrentTime
UserRequest
(Action)

From User

Action UpdateUserLog

Get_
CurrentTime
(TimeNow)

SendTime
(TimeNow)
TO SENDER

TestMessage
TO SENDER

WaitForAck IdleState

Send_Time Test

Figure 6: Paging using NEXTSTATE symbol (page 1)

PROCESS Page_example_1 2(2)

WaitForAck

UserAck
(AckStatus) From User

Update_
UserLog

(Action, TimeNow,
 AckStatus)

IdleState

Figure 7: Paging using NEXTSTATE symbol (page 2)

Although it would be possible to draw the example shown in figure 6 and figure 7 in a single thread with the
WaitForAck state embedded part-way through, it is easier to locate individual states in a more complex specification if
each thread is limited to a single transition (the processing between one state and the next one). (25)Where transitions
are short and simple they can be arranged side-by-side on a single page as shown in figure 8. However, (26)when two
or more transitions are shown on one page, there should be sufficient space between them to make their separation
clear to the reader.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 23

PROCESS Alignment_example 1(3)
DCL
CallParams ReqType,
Result ResType,
Cause ErrType;

TIMER T4 := 10*ms;

Construct_
ErrorSignal

Analyse

IdleState

CallRequest
(Call_
Params)

From User_1

Analyse (CallParams, Result)

Result

Construct_
Onward_
Request

(CallParams)

StartTimer
(T4)

Call_
Request
(CallParams)

TO User_2

WaitFor_
Request_
Response

Construct_
ErrorSignal
(Cause)

Request_
Error
(Cause)

TO User_1

IdleState

Reject_
Request
TO User_1

IdleState

Clear_
Request

From User_1

No call in
progress
so ignore
request

IdleState

Construct_
OnwardRequest

UserKnown UserNotKnown

Caller_
Not_
Authorised

Figure 8: Transitions aligned on a single page

When a single transition extends beyond the length of one page, a connector symbol can be used to provide a link to the
next page. An example is shown in figure 9 and figure 10.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 24

PROCESS Join_example_1 1(4)

DCL
UserID IDtype,
IDstatus EncryptType,
UserStatus ValidType;

TIMER T7 := 3*sec;

Analyse
WaitForInput

DeCrypt
Validate_
User
(UserID)

From Network

Analyse
(UserID,
IDstatus)

Validate

IDstatus

DeCrypt
(UserID)

IPproc

Encrypted Plain

Figure 9: Paging using a connector symbol (page 1)

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 25

PROCESS Join_example_1 2(4)

IPproc

Validate
(UserID,
UserStatus)

UserStatus

StartTimer
(T7)

User_
Validated
(UserID)

VIA Network
User_
NotValidated
(UserID)

VIA Network

WaitForInput WaitForInput

Validated Not_Validated

Figure 10: Paging using a connector symbol (page 2)

As can be seen in figure 9 and figure 10, the syntax of SDL allows a connector symbol to have a process flow line to it
or from it but not both. Figure 11 shows how it is possible for a connector to be attached to a symbol anywhere on a
page. These can be difficult to locate and so, to avoid confusion, (27)connector symbols should generally only be used
to provide a connection from the bottom of one page to the top of another. However, long transitions can often be
avoided by careful use of procedures (see clause 8.1).

Label_5A := B + C

Update_Records
(A)

Figure 11: Example of poor use of a connector symbol

7.2.2 Definitions in behaviour diagrams

An SDL process description (which may exist in a system, block or process diagram) should not be considered to be
simply a "flow-chart" specifying a sequence of actions and decisions to be taken by a particular entity. In order to be
complete, a process description may include the following:

- a specification of formal parameters;

- variable, signal and data definitions;

- class and interface definitions;

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 26

- procedure references;

- class reference;

- the process graph, itself.

Symbols such as procedure references and text boxes containing DCL, TIMER and other declarative statements are
valid for all pages of the process in which they appear. The SDL syntax allows them to be drawn on any page but, for
easier reading, (28)all reference symbols and text boxes containing common declarations should be collected together
at a single point within the process diagrams. For simple processes, and where space allows, these symbols can be
placed together on the first page with the first transition, as can be seen in figure 8 and figure 9. In other cases, a
separate page (or pages, if necessary) can be used to collect these symbols together.

To further improve the readability of the SDL, (29)separate text box symbols should be used for each different type of
declaration (for example, variable declarations, timers, signal specifications, data type specifications and formal
parameters). It can also be useful to sub-divide these groupings into separate text boxes according to
application-specific criteria (for example, grouping all of the BOOLEAN SYNONYM definitions together).

7.2.3 UML activity diagrams

UML does not support the concept of physical pages in its specifications but it may still be necessary to spread a
distinct element of behaviour over more than one activity diagram. In this instance, there is only one mechanism that
can be used for linking the diagrams and that is by using a state symbol. An activity diagram which terminates in a state
other than the "End" state, will be assumed to continue at a subsequent instance of the same state in another activity
diagram. In the example shown in figure 12, the activity in the right-hand part of the diagram continues on from the
"Connected" state on the left-hand side. Particularly in those cases where the specification of behaviour is distributed
over many diagrams, (30)activity diagrams or statechart diagrams should use text boxes indicate what functions are
specified in other diagrams or in which diagram the behaviour continues.

Idle

At System Startup

Check Called
Party ID

SETUP(CalledPartyID)
[CalledPartyID Invalid] ^SETUP_REJECT

Connected

[CalledPartyID Valid] ^CALL_PROCEEDING

Activity continues in
Diagram "Setup_Page2"

Connected

Idle

RELEASE ^RELEASE_ACKNOWLEDGE

At System Shutdown

Continued from diagram
"Setup_Page1"

Figure 12: Example of UML activity diagram pages linked at a state

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 27

7.3 Text extension symbols
The SDL symbols are not always large enough to contain all of the text necessary to specify the task represented by the
symbol and if the character size is set to a value that makes it readable, the text spills over into the area surrounding the
symbol as can be seen in figure 13.

UserErrorRep
(UserID, FailureCode,
SupplementaryInfo)
TO Network

Figure 13: Text overflowing a symbol

This can be difficult to read and, in the strict sense of the language, is syntactically incorrect. Therefore, (31)when the
text associated with a task symbol overflows its symbol boundaries, a text extension should be used to carry the
additional information as shown in figure 14. The syntax of SDL specifies that the text in the extension symbol is
added after the text in the task symbol. To avoid misinterpretation, care should be taken to ensure that the text extension
symbol appears to the right of or below the task symbol unless all of the text is placed in the extension symbol.
However, as a general rule the text extension symbol should not contain all of the text. For example, in the case of
signals, the signal name should be placed inside the input or output symbol.

(UserID, FailureCode,
SupplementaryInfo)
TO Network

UserErrorRep

Figure 14: Use of Text Extension symbol

Even in cases where the text does not overflow the symbol, this is a useful presentation method which can be used to
separate the signal name from the parameter list in inputs and outputs. For reasons of clarity, it is not advisable to split
the parameter list between the primary symbol and the extension.

As an alternative to the use of a text extension symbol, SDL permits the re-sizing of both a task symbol and the text
contained in it.

7.4 Alignment and orientation of symbols

7.4.1 Alignment

Neither SDL nor UML place any semantic significance on the placement and alignment of symbols but a process or
activity page that is carefully arranged and not over filled with symbols and connecting lines will always be easier to
read and interpret than one that is not.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 28

There is no particular benefit to be gained by aligning symbols of a particular type except that (32)symbols that
terminate the processing on a particular page should be aligned horizontally to make it easier for the reader to
identify all of the points where processing ceases or continues on a new page or thread. These symbols include:

- Connector symbol

- NEXTSTATE symbol

- RETURN symbol

- STOP symbol

SDL

SDL

SDL

SDL

- STATE symbol

- END STATE symbol

UML

UML

In the example shown in figure 15, the processing on the page can end in a number of different states. The alignment of
all of the associated NEXTSTATE symbols at the bottom of the page makes it clear what all of these possibilities are.

PROCESS Alignment_example 1(3)
DCL
CallParams ReqType,
Result ResType,
Cause ErrType;

TIMER T4 := 10*ms;

Construct_
ErrorSignal

Analyse

IdleState

CallRequest
(Call_
Params)

From User_1

Analyse (CallParams, Result)

Result

Construct_
Onward_
Request

(CallParams)

StartTimer
(T4)

Call_
Request
(CallParams)

TO User_2

WaitFor_
Request_
Response

Construct_
ErrorSignal
(Cause)

Request_
Error
(Cause)

TO User_1

IdleState

Reject_
Request
TO User_1

IdleState

Clear_
Request

From User_1

No call in
progress
so ignore
request

IdleState

Construct_
OnwardRequest

UserKnown UserNotKnown

Caller_
Not_
Authorised

Figure 15: Example showing the alignment of NEXTSTATE symbols

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 29

7.4.2 Orientation

Most SDL symbols are symmetrical and, thus, cannot be shown in different orientations. INPUT and OUTPUT symbols
are different in that they can be shown either right facing or left facing, thus

SDL accepts both orientations as correct but does not assign any specific meaning to either. However, (33)in simple
systems where each process communicates with only one or two other processes, the orientation of INPUT and
OUTPUT symbols can be used to improve the readability of the SDL. However, to avoid possible specification errors
and misinterpretation, explicit methods of identifying the source and destination of signals should be used. Symbol
orientation should not be considered to be a substitute for the use of a "From" comment on an INPUT or the TO and
VIA statements in an OUTPUT as described in clause 10. (34)If used, the significance of the orientation of SDL
symbols should be clearly explained in the text introducing each process diagram.

7.5 Structuring behaviour descriptions
The behaviour of an SDL system is mainly described in process diagrams which represent the topmost layer of the
behaviour specification. Partial behaviour descriptions can also be described in procedures, methods and operators. For
readability it is important that the behaviour specification is organized and presented in such a way that each reader can
easily find information of particular interest. It is important to bear in mind that a standard is often read in different
contexts at different times. For example, at one time it may be used to gain an overall understanding of the specification
while at another time it may be read in order to extract some specific details.

7.5.1 Basic structuring principles

The key structure within a protocol or service behaviour description is the relationship between a process state, the
events that trigger some form of process reaction, the actions that are taken and the resulting state. Process graphs
should be structured in such a way that these relationships are easy to see, as shown in figure 16. (35)A state, input and
the associated transition to the next state should be contained within a single SDL page.

PROCESS Setup 2(3)

Call_
Established

Release
(callID) From Called Party

Release_
Response via NetworkLink

Release
(CallId) via UserLink

Release_NW_
_resources
(CallId)

WaitFor_
Release_
Response

Figure 16: Simple transition

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 30

7.5.2 Structuring using procedures and operations

Within a standard, the most important actions taken between process states are the generation of output signals. If the
flow of control leading from one process state through input and outputs to the next state cannot be contained within a
single SDL page, some of the detail should be hidden using procedures and operations, as described in clause 8 or
composite states as described in clause 10.

7.5.3 Emphasizing the difference between normal and exceptional
behaviour flows

Within their textual descriptions, standards often make the distinction between normal and exceptional cases. This
distinction can also be used effectively in the SDL. Figure 17 shows an example where the analysis result splits the flow
into normal behaviour which is specified on the same page and error handling which is specified on another page. This
allows the reader to concentrate on the normal behaviour and to look at the various error handling situations if and when
that is required.

PROCESS DestinationNode 2(8)

Idle

Setup
(Call_
Parameters) From TransitNode

Analyse_
Parameters

(CallParameters,
 Result)

Result

Normal
Behaviour

Setup_
Response via TransitNetwork

WaitFor_
Connection

Error_
Case

Exceptional
Behaviour
described on Page 5

ValidParameters Else

Figure 17: Part of process diagram showing only normal behaviour flow

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 31

The separation of normal and exceptional behaviour may also bring benefits to the standard development process, so
that specification of normal behaviour becomes stable before error handling issues are addressed. Wherever it is
appropriate and convenient, (36)process diagrams should segregate normal behaviour from exceptional behaviour. In
such cases, it is also useful to use a text symbol to identify each page of a process as either "Normal Behaviour" or
"Exceptional Behaviour", as shown in figure 18:

PROCESS Setup 3(3)

/** Normal
 Behaviour **/

Idle

(CallId)
Release_
Terminal_
Resources

from Calling Party Release_
Response

WaitFor_
Release_
Response

Figure 18: Labelled page of normal behaviour

8 Using procedures, operations and macros

8.1 Procedures
In common with most programming languages, SDL procedures provide a mechanism for the modular specification of
behaviour that can be used in different contexts.

An important aspect from the point of view of a standards specification is that procedures can be used to hide
distracting detail. By moving detail to procedures, the reader is presented with a clear and concise overview of the
required behaviour even though the detail can be viewed if it is required. (37)The use of procedures to modularise
specifications and to "hide" detail is strongly recommended.

As an example, there may be a requirement in a standard that the contents of an incoming message are analysed and that
subsequent processing be based on the results of the analysis. The method of analysis is not an issue for the standard
and, as can be seen in figure 19, such detail can distract from the main purpose of the process. If, as is shown in
figure 20, the detail is removed to a procedure, the reader is left with the information that the message is to be analysed
but without the distraction of how the analysis is undertaken.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 32

PROCESS Example_1 2(4)

Wait_For_
_CONNECTED

CONNECTED
(Setup_
_Result)

Status :=
Setup_Result!
Call_Status

Status

Destination :=
Setup_Result!
called_Party

ErrorCause :=
Setup_Result!
ErrorCause

Error_
Cause

Cause :=
UserError

Cause :=
NetworkError

Cause :=
UserError

Cause :=
NetworkError

SUCCESS_
_RESPONSE (Destination)

FAILURE_
_RESPONSE
(Cause)

Connected Idle

Success
Failure

UserNotKnown

NoRouteToUser IncompatibleServices

NoNWResponse

Figure 19: Message analysis example without the use of a procedure

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 33

PROCESS Example_2 3(6)

Wait_For_
_CONNECTED Analyse_Input

CONNECTED
(Setup_
_Result)

Analyse_
_Input (Setup_Result, Status,

Cause, Destination)

Status

SUCCESS_
_RESPONSE (Destination)

FAILURE_
_RESPONSE
(Cause)

Connected Idle

Success Failure

Figure 20: Message analysis example using a procedure

8.1.1 Using procedures to replace informal tasks

In existing standards, it is common to see informal text included in an SDL task box as an item of useful, and often
normative, information. For example:

Get user address
from the database

Stimulate the
release of the

basic call

and

NOTE: Although the text shown in the task symbols above is shown exactly as it most often appears in existing
standards, it is important to recognize that without single quotation marks around it ('..') it is illegal SDL.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 34

This notation is very easy to understand but it is not possible simulate or validate the action in the symbol. According to
the strict definition of SDL, the text, "Stimulate the release of the basic call", is interpreted as a name at the start of an
incomplete, and therefore incorrect, assignment statement. To make such expressions formal and executable, (38)convert
informal text descriptions of actions into procedure calls and replace the task symbols with a procedure symbols,
thus:

Get_UserAddress_
From_Database

(UserId,UserAddr)

Stimulate_
_Release_of_

BasicCall

and

Note that in converting such text into a procedure call it may be necessary to add parameters to fully formalize the
interface to the procedure.

8.1.2 Procedure signature (parameters and returned values)

A procedure interface specification identifies a set of parameters for the procedure and defines how these parameters are
passed to and from the procedure. (39)All data relevant to the real behaviour represented by a procedure should be
specified in the parameter list and returned value (if any). This means that a signature is specified which allows the
contents of the procedure to be updated at a later stage without affecting the other parts of the specification.

The specification for a procedure signature can include:

• data items that are to be passed to the procedure (IN parameters);

• data items that are to be passed back to the calling process. These can be specified as either IN/OUT
parameters which are passed to the procedure and modified within it or OUT parameters which can only be
passed from a procedure but not to it. These returned parameters can be specified as:

- a list of one or more items which appear in the calling statement. An example of a call to such a
procedure is as follows:

Get_Position(identifier, X_Coord, Y_Coord);

Output parameter

Input parameter
Modifiable input parameter

Procedure call Procedure signature

Get_Position
 (IN identifier,
 IN/OUT X_Coord,
 OUT Y_Coord)

- a single value associated with the procedure name itself. The following is an example of a call to a
procedure of this type:

Calling_Party := Extract_Originator(Setup_Data);

Input parameter

Result

Extract_Originator
(IN Setup_Data) -> Party_Number

Procedure call Procedure signature

Figure 21 and figure 22 show simple examples of each of these procedure types while figure 23 shows how the
procedures could be called.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 35

(IN degC Temperature) -> RETURNS Temperature;

PROCEDURE Convert_To_degF 1(1)

DCL degF Temperature;

degF :=
 ((degC * 9)/5) + 32

degF

Figure 21: Example of a value-returning procedure

(IN degA Temperature,
 OUT degF Temperature,
 OUT degC Temperature);

PROCEDURE Convert_Abs_To_F_and_C 1(1)

degC :=
 degA + 273

degF :=
 ((degC * 9)/5) + 32

Figure 22: Example of a procedure returning values in the parameter list

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 36

PROCESS ProcCallExample_1 2(3)

Convert_To_degF

Convert_Abs_
_To_F_and_C

Wait_For_
Thermometer

_Reading

Receives Thermometer reading
in Centigrade, converts to
Fahrenheit and sends it out

Wait_For_
Absolute
_Temperature

Receives thermometer reading
in Absolute, converts to both
Centigrade and Fahrenheit and
sends them out

READ_
_THERM
(Temp_C)

READ_
_THERM
(Abs)

Temp_F :=
CALL Convert_
_To_degF

(Temp_C)
Convert_Abs_
_To_F_and_C

(Abs,Fahr,Cent)

SEND_THERM
(Temp_F)

SEND_
_THERM_F
(Fahr)

Wait_For_
_Acknowledge

SEND_
_THERM_C
(Cent)

Wait_For_
_Acknowledge

Figure 23: Examples of procedure calls

Procedures which return a value associated with the procedure call itself (see figure 21) can be used in place of
variables in decisions, assignments, and output parameter lists to hide some of the detailed processing which is not
essential to the understanding of a standard. However, (40)in most cases it is preferable to use operations instead of
value-returning procedures.

Procedures defined within the scope of the process calling them can access the variables belonging to that process.
Accessing data in this way, particularly writing to a process variable from within a procedure, can result in a confusing
specification. In order to avoid the possibility of this confusion and any other unexpected side-effects (41)procedures
should only read and write to variables that are passed to the procedure in the parameter list or are declared within
the procedure itself.

8.1.3 Procedure body

The behaviour specified within a procedure can be more or less complex depending on the application. In the example
shown in figure 20, the Analyse_Input procedure should be completed so that automatic tools can be used to check the
syntax and semantics of the SDL. The following methods can be used:

1) provide a "dummy" procedure that does nothing (see figure 24);

 this is adequate where the detailed behaviour of the procedure is not considered to be normative even though
the overall function of the procedure may be. Figure 20 above is an example of this. It is important to include
the dummy procedure in the standard as its formal parameters and results statements serve to define what, in a
full implementation, the interface should be between the calling process and the function expected of the
procedure.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 37

2) provide a procedure that uses an ANY decision to arbitrarily return one of the possible values without actually
specifying how the value is determined (see figure 25);

 this is an ideal approach if the SDL model is to be validated by an automatic tool as it ensures that all possible
result values are evaluated during the validation process.

3) provide a procedure that specifies in detail the behaviour expected (see figure 26);

 this is the best approach in cases where the procedure has been used to hide complex behaviour but that
behaviour is considered an important and normative part of the standard. It would also be advisable to use this
approach when simulating the full behaviour of the model.

Whichever method is chosen, (42) procedures should specify a level of detail that is suitable for the particular purpose
of the standard. At a minimum, the procedure should express the requirements it is modelling, even if this is simply a
comment or a reference.

(IN Conn ConnectType,
 OUT Cause RespErrType,
 OUT Dest PartyNumber);

PROCEDURE Analyse_Input_Example_1 1(1)

/*
The true purpose of this procedure
would be to analyse the contents of
a CONNECT message, extracting and
returning the address of the called
party if the call was successful or
the error cause (UserError or
NetworkError) if unsuccessful.
Refer to Subclause 6.4.5 for a
detailed description.
*/

Dummy procedure with
no specified behaviour

Figure 24: Example "Dummy" procedure

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 38

(IN Conn ConnectType,
 OUT Cause RespErrType,
 OUT Dest PartyNumber);

PROCEDURE Analyse_Input_Example_2 1(1)

/*Define a synonym to represent any
party number. Only one value (1234)
is generated.*/

SYNONYM
 TestPartyNumber = 1234;

Dummy procedure which
generates output parameter
values suitable for validation

ANY
Decision would normally be based
on 'Cause' which has the literal
values, "NoError", "UserError" and
"NetworkError"

Dest :=
Test_
PartyNumber

Cause :=
NoError

Cause :=
UserError

Cause :=
NetworkError

/*NoError*/ /*UserError*/ /*NetworkError*/

Figure 25: Example of a simple procedure suitable for validation purposes

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 39

(IN Conn ConnectType,
 OUT Cause RespErrType,
 OUT Dest PartyNumber);

PROCEDURE Analyse_Input_Example_3 1(1)

DCL
Status CallStatusType,
ErrCause ConnErrorType;

Procedure specifying particular
behaviour

Status :=
Conn!Call_Status

Status

Dest :=
Conn!called_party

ErrCause :=
Conn!ErrorCause

ErrCause

Cause :=
UserError

Cause :=
NetworkError

Cause :=
UserError

Cause :=
NetworkError

Success Failure

UserNotKnown

NoRouteToUser IncompatibleServices

NoNWResponse

Figure 26: Example detailed procedure

8.1.4 Avoiding side-effects

Each procedure should have a limited and clearly identifiable purpose which should fall into one of the following two
categories:

1) Procedures that either analyse something or calculate something from input parameters and return a value that
represents the result of the activity.

 Some programming languages refer to this use of a procedure as a function. (43)A functional procedure
should fulfil its specified role and do nothing that could be considered to be a side-effect. For example, a
procedure that analyses the parameters received with a message should return a value that determines the
future behaviour of the calling process. That behaviour may include sending of signals. (44)The processing of
signals is one of the most important activities shown in the SDL of a protocol standard and should normally
be visible in the calling process rather than the called procedure. Equally so, if the purpose of a procedure is
to calculate something, it should do that and nothing else.

2) Procedures that generally do not return any value but have a limited sequence of actions to perform.

 These actions are worth putting in the procedure provided that the same sequence of actions is repeated in
many situations. In this case it may be appropriate that one or more related signals are sent from within a
procedure. However, (45)it is important that procedures that specify a limited sequence of actions should be
given names that reflect as fully as possible the activity performed by a procedure.

In either case, (46)behaviour that could be considered a side-effect to its defined purposes, should not be specified in a
procedure.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 40

The specification of states within procedures obscures the processing of inputs and the overall synchronization of the
calling process. Although not generally recommended, it is reasonable in some exceptional cases for a procedure to
include the specification of states. Such situations are rare but an example would be a procedure which starts a 500 ms
timer and excludes all other processing until the timer expires. In this case, a state is necessary in order to receive the
timer expiry

(47)In the exceptional case that a procedure includes the specification of one or more states, it is important to ensure
that all signals which are not directly processed within the procedure are correctly handled for subsequent
processing. This can be accomplished in one of the following ways:

- explicitly receiving all possible input signals in all states in the procedure;

- using the "SAVE all inputs" symbol which ensures that all signals that are not explicitly processed in the state
are maintained as inputs until the next state is reached (see the example in figure 27).

A simple example of a procedure containing a state symbol is shown in figure 27.

PROCEDURE Delay500ms 1(1)

/* The timer T500 is defined
in the calling process as
follows:

 TIMER T500 := 500*msec;

*/
StartTimer
(T500)

A macro which is used to
start the timer.

Wait_
_For_Timeout

T500
/*Expiry*/ *

Save all other inputs to be
received in the calling process

Figure 27: Example of a procedure containing a state

8.1.5 Naming of procedures

Procedure names should follow the naming conventions described in clause 5 and should attempt to clearly reflect the
purpose of the procedure without requiring detailed knowledge of the contents of the procedure (e.g., Analyse_SETUP).
(48)The names of procedures having multiple effects should reflect each intended effect either individually or
collectively. For example, a procedure that builds and then transmits a SETUP message might be named
"BuildAndSend_SETUP".

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 41

8.2 Operations
In many situations operations represent a viable alternative to procedures. There are, however, some useful differences
between them:

- operations are not permitted to have states;

- operations are not permitted to send signals;

- operations are permitted to access only parameters and variables declared inside the operation;

- operations may be used wherever procedures are valid but, unlike procedures, they can also be used in
continuous signals.

Thus, operations inherently have many of the desired characteristics of value-returning procedures described in
clause 8.1.4.

An operation is one of two kinds indicated by the keyword in the signature:

• operator with a list of parameters. Must return a result and is used as an expression;

• method with a list of parameters. Has an optional result and must be applied to an expression (usually a
variable but it can, for example, be a method application) by means of the dot notation (see figure 31).

No general recommendation can be made on the choice of whether to use an operator or a method. If an object-oriented
style were preferred, methods would probably be used, whereas for a more functional style operators would probably be
used. In most cases a mixture of operators and methods could be used.

An operator may be thought most appropriate if the operation just uses values (all the parameters are IN parameters) to
determine the result. An operator can be defined in any appropriate data type.

A method may be thought most appropriate if the main purpose of the operation is to change the contents of a variable
that it is applied to.

One of the simplest but most effective uses of operations is to improve the readability of expressions that contain data
elements that need to be extracted from a complex data type. For example, consider the extraction of an OPTIONAL
item of a field of a CHOICE data type, defined in ASN.1 as:

 UnitData ::= CHOICE
 { callInfo CallData,
 packetInfo PacketData
 }
 CallData ::= SEQUENCE
 { callingParty PartyAddress,
 callingSubaddress PartySubAddress OPTIONAL,
 calledParty PartyAddress,
 calledSubaddress PartySubAddress OPTIONAL
 }

An assignment of the sub-address of a variable unitdata of this data type structure may look like this:

 theSubAdd :=
 IF callInfoPresent(unitdata)
 THEN IF calledSubAddressPresent(unitdata.callInfo)
 THEN unitdata.callinfo.calledSubAddress
 ELSE noSubAddress FI
 ELSE noSubAddress FI;

As well as being long to write, the statement also shows in detail how the element is accessed and the handling of a
missing sub-address which is probably not relevant in the context of the function of the process.

The example in figure 28 shows how an operator can be added to an inherited ASN.1 complex data type to perform the
necessary extraction of the data element.

NOTE: Although most data types are specified in protocol standards using the ASN.1 notation defined in ITU-T
Recommendation X.680 [8], operations can only be added in an SDL data type definition.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 42

USE
ExampleASN1;

PACKAGE DataExample 1(1)
VALUE TYPE UnitDataType INHERITS UnitData
 ADDING
 OPERATORS
 called_subaddress_from (IN UnitData_Type) -> PartySubAddress;
 OPERATOR called_subaddress_from;
 (data UnitData_Type) -> PartySubAddress;
 { IF callInfoPresent(data) = false THEN
 RETURN noSubAddress;
 IF calledSubAddressPresent(data.callInfo) = false
 RETURN noSubAddress;
 RETURN calledSubAddressPresent(data.callInfo);
 }
ENDVALUE TYPE UnitDataType;

Figure 28: SDL package where new data type containing an operation is specified

An operation is defined as part of the data type to which it belongs and has interface and body specifications similar to
those defined for procedures. There is also a signature specification that introduces the operation name and specifies the
types of parameters that it receives and returns.

Having defined the operator, the assignment statement can now be re-expressed as:

 theSubAdd := called_subaddress_from(unitdata)

This assignment is shorter than the original, and it now shows the most useful information of what is extracted and
where it originates.

(49)The textual syntax of SDL can be used to define simple operations such as the one shown in figure 28. More
(50)complex operations should be specified as operator or method diagrams which are referenced from the relevant
data type specification.

An example of where an operation could be very useful is in the management of a circular counter that is permitted to
have only a restricted range of values. Each time the value of the counter is incremented, there needs to be a check to
determine whether the upper limit has been reached and, if so, counting needs to be restarted from the lowest allowed
value. Instead of specifying it repeatedly in process diagrams, an operation can be used for this purpose. Figure 29
shows the necessary data type specification and includes the operator diagram reference. Figure 30 shows the operator
diagram itself.

BLOCK BlockWithMethod 2(2)

VALUE TYPE Counter_1to20
 INHERITS INTEGER
 ADDING
 METHODS
 incr -> Counter_1to20;
 METHOD incr-> Counter_1to20 REFERENCED;
 CONSTANTS 1:max20;
ENDVALUE TYPE Counter_1to20;

SYNONYM max20 Counter_1to20 = 20;

Figure 29: Data type containing the signature specification of a method

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 43

-> Counter_1to20;

METHOD incr 1(1)
/* A method this simple, does not really justify
the use of a digram - it would be simpler as
text in the data type. */

THIS

THIS:=1

THIS

THIS:=
THIS+1

THIS refers to the item to
which the method is applied

max20 ELSE

Figure 30: Method diagram

The method defined in figure 30 can usefully be applied to a variable in a loop as given in figure 31.

PROCEDURE DotNotationExample 1(1)

DCL i Counter_1to20;

i:=1

freecircuit
(i)

method incr
applied to
i with dot
notation

i.incr

ELSE
1

Figure 31: Application of method from figure 30 with the dot notation

Figure 32 shows how operators can be used to achieve the same effect as the procedure call shown in figure 20. Three
operators are used to extract status, error cause and destination address information from the Setup_Result parameter of
the CONNECTED message. The intermediate Analyse_Input step is removed and, by choosing names for the operators
carefully (Status_from, Cause_from, and Destination_from), the readability of the SDL is improved.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 44

 PROCESS Example_OperatorUse 2(3)

Wait_For_
_Connected

CONNECTED
(Setup_
Result) FROM CalledUser

StatusFrom
(SetupResult)

Success_
_Response

(DestinationFrom
(SetupResult))
VIA UserLink

Failure_
_Response

(CauseFrom
(SetupResult))
VIA UserLink

Connected Idle

Success

Failure

Figure 32: Examples of operator invocation

The operator signature specification, with references to appropriate operator diagrams, for the above example is shown
in figure 33. The operator diagram for CauseFrom is shown as an example in figure 34.

BLOCK exWithOperators 1(4)

NEWTYPE Setup_Result_Type

/* only parts related to operator definition are shown */

OPERATORS
 Status_from: Setup_Resul_Type -> StatusType;
 Destination_from: Setup_Resul_Type -> DestinationType;
 Cause_from: Setup_Resul_Type -> CauseType;

 OPERATOR Status_from REFERENCED;
 OPERATOR Destination_from REFERENCED;
 OPERATOR Cause_from REFERENCED;

ENDNEWTYPE Setup_Result_Type;

Figure 33: Example of data type definition containing operator signature specification

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 45

(IN Conn SetupResultType) -> Cause CauseType;

OPERATOR CauseFrom 1(1)

DCL
 ErrCause ConnErrorType; Operator specifying in detail

the derivation of connection
failure cause

ErrCause :=
 Conn!ErrorCause

ErrCause

Cause :=
 UserError

cause :=
 Network_
 Error

Cause :=
 UserError

Cause :=
 Network_
 Error

UserNotKnown NoRouteToUser Incompatible_
Services

NoNWResponse

Figure 34: Example of detailed operator diagram

8.3 Using macros
SDL provides a facility for specifying behavioural macros (i.e. a shorthand notation for functions which are repeated at
several points within a specification). Macros may only be specified in a textual form and can be dangerous constructs
which, if not used with extreme care, are likely to make a specification difficult to interpret and understand, particularly
where the macro specifies a complex function. Thus, (51)the use of macros should be limited to those cases where the
macro can be contained within one printed page.

There is one particular circumstance where macros can be used to add clarity and readability to a standard. In most
protocol standards, SDL timers are controlled using the informal terms such as "Start Tn" and "Stop Tn". Unfortunately,
SDL uses the keyword SET to start a timer and RESET to stop it. To avoid the use of SET and RESET (which is often
misinterpreted to mean "re-start the timer") it is possible to define two macros for this purpose. SDL already uses the
keywords START and STOP and so, in figure 35 the macros have been named Start_Timer and Stop_Timer.

PACKAGE Timer_Start_and_Stop 1(1)

MACRODEFINITION Start_Timer (theTimer);
 SET (theTimer);
ENDMACRO Start_Timer;

MACRODEFINITION Stop_Timer (theTimer);
 RESET (theTimer);
ENDMACRO Stop_Timer;

Figure 35: Macro definitions for starting and stopping a timer

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 46

The example in figure 36 shows how these macros can be used in practice. Note that the expiry of a timer in SDL is
shown as an INPUT symbol simply containing the identifier of the timer. In this example, the word "Expiry" has been
added as a comment for clarification.

PROCESS Dialling Setup(2)

TIMER T300 := 300*msec; Get_Setup_Parameters

Idle

Call_
Request
(Destination) From User

Get_Setup_
_Parameters

(Desination,
 Params)

SETUP
(Params) VIA NetworkLink

Start_Timer
(T300) Macro Call

WaitFor_
Call_

Proceeding

CALL_
PROCEEDING From Network T300

/*Expiry*/

Macro Call Stop_Timer
(T300) CallFailure VIA UserLink

WaitFor_
Connection Idle

Figure 36: Process illustrating the use of macros

9 Using decisions
Conditional and optional requirements expressed in the textual version of a standard can often be represented in SDL as
decisions or options. Decisions are used when the behaviour depends on current values of variable or expressions
(see clause 9.1). Options are used when the behaviour is fixed by the implementation (or non-implementation) of
optional requirements (see clause 9.2). Additionally, SDL algorithmic expressions permit the use of a range of
conditional and looping statements for the control of textually-expressed behaviour (see clause 9.3).

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 47

9.1 Decisions
A decision symbol may contain:

• informal text;

• an expression that evaluates to a value of a certain data type, for example:

- a variable;

- a procedure call;

- an operator or method application.

The use of informal text in decisions is described in clause 9.1.3. The remaining cases have the following in common:

- the data type of the expression contained in the decision precisely determines the range of values that are
acceptable;

- each branch that follows a decision begins with the specification of an answer that determines the range of
values for which that particular branch is to be taken. Such values can only be static and, thus, are not
permitted to contain expressions that depend on variables or procedure calls.

(52)It is essential that the complete range of values of the data type contained in the decision is covered by ranges of
values in the answers without any overlap. In this way it is possible to ensure that a unique execution branch is
available for all possible results of a decision. The following errors can occur in the specification of a decision and
should be avoided:

- part of the range is not covered by an appropriate answer. This means that there is no path through the decision
for such values and so further behaviour is unspecified;

- the ranges of one or more answers overlap. In this case, more than one branch can be taken for a particular
value and this would lead to is ambiguity;

- the range of values specified in the answers is larger than the range of values of the data type contained in the
decision. As a result, some branches may never be executed. This is likely to be confusing and would hamper
readability.

9.1.1 Naming of identifiers used with decisions

Sensible use of identifiers should ensure that a decision has a clear correspondence to the various alternatives expressed
in the text. In addition to following the naming conventions expressed in clause 5 (53)identifiers used in decisions
should clearly reflect to a reader the "question" and "answer" nature of the conditions being expressed.

9.1.2 Using decisions to structure a specification

Decisions can be used effectively to divide a specification into separate parts, each dealing with a particular aspect of
behaviour. For example, it is quite effective to use a decision to segregate the normal expected behaviour from the
exceptional behaviour. This approach can improve the readability of a standard and is illustrated further in clause 7.5.3.

It is sometimes the case that a standard needs to specify a complex decision tree based on a number of different
parameters. An example of this might be the determination of an error cause based on a message received and the status
of some internal data items. In most cases, particularly where the decision process is considered to be normative, it is
not possible to simplify the presentation of the decision process by using alternative SDL constructs without losing
clarity. Summarizing the decisions in a table before attempting to write the SDL can be helpful. Each decision should
then be specified explicitly in the SDL and not hidden in a procedure or operator.

9.1.3 Use of text strings in decisions

The simplest way of expressing the basis of a decision is to use informal text. This method is often chosen by specifiers
for its readability. However, it is prone to errors as it gives no precisely defined relationship between the range of values
acceptable in a decision and the range of values expressed in the answers.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 48

In the example shown in figure 37, the implication is that the question is of a binary nature. Unfortunately, as that is not
specified explicitly, other values, such as 'Minor error', could exist as part of the range results. The reader cannot be
helped by automatic tools which are unable to detect such problems.

'NoErrorDetected' 'ErrorDetected'

'CRC_Error?'

Figure 37: Use of informal text in a decision

NOTE: In a simulation environment the user would be prompted at run-time to choose a particular outcome.
While this allows flexibility, it can make simulation cumbersome by requiring excessive interactive input.

As more possible outcomes are included in a decision expressed using informal text, there is an increased likelihood of
an ambiguous interpretation of the result which automatic tools would be unable to resolve. Thus, (54)the use of
informal text in decision statements should be limited, preferably to those cases where the decision is obviously
binary in nature.

It is common in SDL specifications to omit the quotes (' ') around the text string. This is syntactically incorrect as the
quotes should always be present.

9.1.4 Use of enumerated types in decisions

The use of enumerated types results in a style which is similar in appearance to the example in figure 37 but which has
the additional and important benefit that a relationship between the question and answers is explicitly and precisely
defined. The reader is made aware that there are no more than two possible outcomes. Furthermore, a tool can check
that:

- the contents of the decision symbol and the outcomes are compatible;

- the value expressed for each outcome is within the enumerated range;

- that all items in the enumeration have a possible outcome.

NoErrorDetected ErrorDetected

 CRC_Error

ASN.1 specified in a separate module

ErrorCodes ::= ENUMERATED
 { ErrorDetected,
 NoErrorDetected }

DCL
 CRC_Error ErrorCodes;

Figure 38: Use of enumerated types in a decision

NOTE: In this example a simulator would take one branch or the other depending on the actual value of
CRC_Error.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 49

While this approach requires slightly more effort to declare the enumerated types and the associated variables, it
produces a specification which is far less prone to error and aids understanding by allowing the grouping of related
components such as error codes, service options and status values. (55)In most cases, enumerated types rather than text
strings should be used to express decisions.

9.1.4.1 Use of ELSE

The use of the SDL built-in value ELSE is useful in completing ranges of outcomes. In the example shown in figure 39,
separate branches are specified for 7 200 bps, 9 600 bps and 14 400 bp while 28 800 bps and 33 600 bps are both
covered by the ELSE.

 ASN.1 specified in a separate module

BitRates ::= ENUMERATED
 { 7200bps,
 9600bps,
 14400bps,
 28800bps,
 33600bps }

 Available_
BitRate

7200bps

DCL
 AvailableBitRate BitRates;

14400bps ELSE 9600bps

Figure 39: Use of ELSE in a decision

Note that a precise interpretation of the ELSE construct is only possible if the range of values in a decision is defined by
a data type (be it enumerated or any other type).

(56)ELSE should be used as a decision outcome value to distinguish between one or more specific outcomes and all
other possibilities.

9.1.5 Using SYNTYPES to limit the range of values in decisions

It is often necessary to limit the range of values a particular data type can have. This is especially important in decisions
where ELSE is used since it limits the range of values that lead to an ELSE branch. In most cases, the SDL concept of
SYNTYPE or the ASN.1 constraint can be used to define a type that is basically the same as an existing type but which
has a limited range. In the following ASN.1 and SDL examples, the type 'Digit' has all properties of 'Integer' but cannot
take values that are less than zero or greater than 9.

ASN.1

Digit ::= INTEGER(0..9)

SDL

SYNTYPE Digit = Integer CONSTANTS (0..9);

Thus, (57)ASN.1 constraint or SDL SYNTYPE constructs should be used to limit the range of values represented by
an ELSE branch in a decision.

9.1.6 Use of symbolic names in decision outcomes

In many cases the content of the decision will be a boolean data type, which means that the values of true and false
should be given in answers. (58)SDL SYNONYMs should be used to define meaningful alternatives to the Boolean
values of true and false if this aids clarity. Figure 40 shows examples of the specification of Boolean SYNONYMs.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 50

SYNONYM Yes Boolean = true;
SYNONYM No Boolean = false;

SYNONYM Available Boolean = true;
SYNONYM NotAvailable Boolean = false;

SYNONYM Success Boolean = true;
SYNONYM Failure Boolean = false;

DCL
 NumberPresent Boolean,
 InputData Boolean,
 UpdateDB Boolean;

Number_
Present

UpdateDB

Input_
Data

Yes

No

Available

NotAvailable

Success

Failure

Figure 40: Examples of the specification and use of SYNONYMs with decisions

9.1.7 Use of range expressions in decisions

In some cases, as shown in figure 41, it is more meaningful to use comparisons to identify the possible outcomes from a
decision.

ACK_Counter

=10 > 10 < 10

Figure 41: Use of range expressions in a decision

Although this explicit expression of outcome values is unambiguous, it lacks resilience to change. For example, if the
value '10' was the maximum value that Ack_Counter should reach and it is used in numerous decisions throughout the
specification, it would be very time-consuming to modify all relevant instances of 10 in the event that the requirement
for the maximum value of Ack_Counter changes. For the purposes of flexibility and as described in clause 6.2.3.6,
symbolic names rather than explicit values should be used to express decision outcome conditions. This approach is
shown in figure 42.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 51

Ack_Counter

<maxAckCount =maxAckCount >maxAckCount

ASN.1 specified in a separate module

maxAckCount CountType ::= 10

Figure 42: Use of symbolic names rather than explicit values

9.1.8 Use of Procedures in Decisions

It is possible to use procedures in conjunction with decisions both to simplify the SDL and to improve its syntax
without impairing its readability. As an example, the informal description shown in figure 43 could be re-written in
three ways using a procedure with the decision.

 'Name
Valid?'

'Yes' 'No'

'Get User Name
From Database

Using User Number'

Figure 43: Informal task and decision

NOTE: The text in each of the boxes in figure 43 is shown in single quotes. These have often been omitted in
SDL diagrams within standards. This is illegal rather than informal SDL.

The first alternative is to call a value procedure directly from the decision, as in figure 44. The procedure UserName
extracts from the database the user's name associated with UserNo.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 52

ELSE blank

UserNameFromDatabase

ASN.1 specified in a separate module

blank IA5String ::= ""

UserNameFrom_
Database
(UserNo)

DCL
 UserNo PartyNumber;

Figure 44: Procedure called from within a decision

The advantages of this method are that it is concise and, in many cases, highlights only those aspects of the
specification that are important to the standard.

It may be considered to be a disadvantage of this approach that in some instances it is too concise and hides normative
requirements in the procedure.

The second alternative is to assign the result of the value procedure to a variable before making the decision based on
the contents of the variable as shown in figure 45.

ASN.1

Name

ELSE blank

blank IA5String ::= ""

Name :=
 UserNameFrom_
 Database (UserNo)

DCL
 Name IA5String,
 UserNo PartyNumber;

UserNameFromDatabase

Figure 45: Decision based on a variable assigned from a value procedure

The advantage of this method is that it can make clearer the individual steps involved.

The disadvantages are that an additional variable (Name) needs be specified and the assignment statement is less
descriptive than the informal text.

In figure 44 and figure 45 the use of a procedure could equally well be replaced by an operator or method application.
Further details on the use of procedures, operators and methods can be found in clause 8.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 53

The final alternative is to call a procedure which returns a value as a parameter which is then used as the basis for the
subsequent decision, as shown in figure 46.

Name

ELSE blank

DCL
 Name IA5String
UserNo PartyNumber;

Get_UserName_
_From_DataBase
(UserNo, Name)

Get_UserName_From_Database

ASN.1 specified in a separate module

blank IA5String ::= ""

Figure 46: Decision based on a parameter returned from a procedure

The main advantage of this approach is that by careful choice of the name of the procedure, the SDL can be quite easy
to read and understand.

The disadvantages are the same as those for the second alternative with the additional factor that returning the decision
variable in a parameter can mask errors in the specification. As an example, if the procedure Get_UserName_From_DB
did not determine and return a value in the Name parameter, this may not be detected by automatic tools and the
decision would be based on whatever value had previously been assigned to Name.

All of the three alternatives above are valid methods and it is a matter for the rapporteur to decide which is the most
appropriate on a case-by-case basis. Whichever one is selected, (59)procedure calls should be used in conjunction with
decisions to eliminate the use of informal text.

9.1.9 Use of ANY in decisions

For validation purposes, it may be necessary to re-specify decisions using the non-deterministic ANY expression.
However (60)the ANY expression should not appear in the SDL specifications in standards except where it is
included to show the behaviour of an entity (such as a user) that is not the subject of the standard.

9.2 Use of options rather than decisions
The dynamic nature of decisions is not well suited to the expression of the implementation options which are often to be
found in protocol standards. Fortunately, SDL includes a symbol (see figure 47) specifically for this purpose. The
processing path through this symbol is evaluated at system generation time based on the static value provided for the
optional item. This path is then fixed until the system is re-generated with a different value of the optional item.

(61)Where mutually exclusive implementation options are to be expressed, the option symbol should be used rather
than a decision.

The most effective way of labelling the paths leading from an option symbol is to define appropriate synonyms.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 54

SYNONYM Implemented Boolean = true;

SYNONYM MultiplexingCapability
 Boolean = Implemented /* or NotImplemented */;

SYNONYM NotImplemented Boolean = false;

Implemented

Multiplexing_
Capability

NotImplemented

Figure 47: Use of SYNONYMs with options

NOTE: A practical problem can occur with a specification model that has many options and which is to be used
for validation purposes. In such cases the 'hardwired' nature of SDL options makes this cumbersome as
each new combination will require a new compilation of the executable model. Decisions together with
some form of parameterization would provide a more flexible approach.

9.3 Flow control statements
There are some specification tasks for which the SDL graphical symbols are not ideally suited. One example of such a
task is the calculation of the polynomials required by authentication procedures. For these cases it is possible to use
SDL algorithmic expressions which are based on a structured textual language. Within this language there are a number
of flow control statements, thus:

- IF statement

 equivalent to an "IF…THEN…ELSE" construct;

- DECISION statement

 equivalent to a "CASE" construct;

- LOOP and CONTINUE statements

 equivalent to a "WHILE" construct but can also be use as a "FOR….STEP….NEXT";

- "BREAK" and "LABEL" statements

 equivalent to a "GOTO label" statement.

These statements are very powerful but, for obvious reasons, lack the clear presentation of the graphical form. However,
they are generally more compact and easier to interpret in the specification of either very simple tasks or more complex
algorithmic computations. (62)SDL algorithmic flow control expressions should be restricted to situations where the
required behaviour involves only the processing of data but not the sending of signals and not the control of timers.
When there is a good reason for using them, the clarity of a specification can be improved by defining algorithmic
expressions in procedures with meaningful names indicating the function(s) performed by them (see clause 8).

Figure 48 shows an extract of an SDL process diagram which takes a value received in the UserQoSRequest signal and
calls the Determine_RValue procedure to obtain values of Requested_Rval and Availability_Type. The text procedure
specification in figure 49 extracts QoS_Class from the IN parameter and uses that as the control variable in a decision
statement which assigns values to RvalReq and Av_Type.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 55

PROCESS FE1 2(3)

Idle

User_
QoSRequest
(R_Request)

From Calling User

Determine_
_Rvalue

(R_Request, Requested_Rval,
Availability_Type)

Availability_
Type

Normal_
Behaviour

Exceptional_
Behaviour

Guaranteed NotGuaranteed

Figure 48: SDL calling an algorithmic expression in a procedure

 PROCEDURE Determine_Rvalue
 (IN ReqR qosClass,
 OUT RvalReq rVal,
 OUT Av_type qosAvailability)

 { DCL
 QoS_Class classNo;

 QoS_Class := ClassNumber_From(ReqR);
 DECISION (QoS_Class)
 { (best) :{ RvalReq := 200;
 Av_Type := guaranteed; }
 (high) :{ RvalReq := 80;
 Av_Type := guaranteed; }
 (medium) :{ RvalReq := 70;
 Av_Type := guaranteed; }
 (Acceptable) :{ RvalReq := 50;
 Av_Type := guaranteed; }
 (best_effort) :{ RvalReq := 50;
 Av_Type := not_guaranteed; }
 (user_defined) :{ RvalReq := MaxR_From(R_Req);
 Av_Type := guaranteed; }
 }
 RETURN;
 }

Figure 49: Text procedure using DECISION statement

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 56

10 System structure, communication and addressing
Although one of the principle aims when using SDL in a descriptive manner is to provide a readable specification that
concentrates on describing what the system is supposed to do (requirements) rather than on the detail of how the system
is to be implemented, SDL has some inherent structure. The simplest model needs to identify communication with the
environment, the pieces that make up the SDL and the addressing of communication. A useful technique for hiding
detail at various levels of complexity is the layering of information (sometimes called data hiding) where pieces of the
SDL contain other pieces, the details of which are hidden from the highest level. An SDL system description therefore
defines the structure of the visible system pieces, and each of these in turn can contain structure and behaviour.

NOTE: The structure and readability of an SDL specification with respect to its graphical layout is considered in
clause 7.5 and the use of data for signals in clause 11.

10.1 System structure
SDL allows the layered specification of systems such as protocols or services in a hierarchical manner through the use
of agents: system, blocks and processes. Usually the system and block agents define the static architecture of the system,
whereas process agents that are contained in a block or system define its dynamic behaviour. Although a block can be
defined to have a state machine, if state machine descriptions are restricted to agents that are processes, the block and
process symbols then give a clear indication of which agents have their own behaviour and which do not. A very simple
system may consist of a system agent containing a single process.

The SDL system and block structuring give an unambiguous description of the system architecture. It is usual that
architectural aspects are described elsewhere in a standard (or even in other standards) often using non-SDL figures. If
this is the case then (63)the SDL version of the architecture of a protocol or service should be consistent with and
complementary to other (non-SDL) descriptive diagrams. This is particularly important in relation to naming, which
facilitates the easy identification of system components. In addition, (64)comments should be used to convey to the
reader the relationship of the SDL architecture to the relevant non-SDL parts of the standard. If the structure of the
system is specified in SDL, informal drawings that duplicate structural information given by the SDL diagrams should
not be used. This may mean including SDL system diagrams in the parts of the document where structure and
architecture are discussed.

The major advantage of SDL structure diagrams is that their meaning is well defined, so that the document does not rely
on intuitive understanding of an informal drawing or introduce an explanation of the notation used. Of course, many
issues (such as physical attributes of equipment) cannot be described in SDL, and other well-defined notations may also
be used.

An SDL specification is incomplete if it includes behaviour descriptions in agent diagrams but does not include the
associated structure diagrams. For example, a system diagram containing agents and the channels connected to the
agents defines the structure of the system. Even in the case of a simple protocol or service, (65)the SDL specification
within a standard should comprise one system composed of at least one agent. This is not simply a case of 'getting the
SDL right' for the sake of it. The SDL architecture provides useful information for the reader such as what entities and
communication paths exist within the system. There is usually more than one connection with the environment and
different channels connected to the frame in the SYSTEM diagram show this. The communication paths have an
important role in the addressing of messages from one behavioural part to another (66)SDL should be used to show the
structure of a system as well as its behaviour.

NOTE: SDL block and process agents define the functional partitioning of the system. Using SDL does not imply
that a real system need implement a standard exactly as defined by the SDL, only that the implementation
should exhibit external behaviour over the normative interfaces that is equivalent to the behaviour defined
by the SDL model.

In a complex standard it is possible that the SDL description only covers part of the system. It may also be necessary to
include sub-structuring that is only implied in the text but which is needed to give a coherent and complete SDL model.
It is not possible to give strict guidelines on how to structure a specification, as this will depend on the subject matter of
the standard. However, although the careful use of sub-structures can make a complex specification easier to
understand, the overuse of sub-structures can render them unreadable. (67)SDL sub-structuring should be used to
simplify complex SDL models but should not be used excessively.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 57

10.2 Minimising the SDL model
The example in figure 50 shows a situation where there are a large number of identical user terminals communicating
with one of several identical local concentrators, which are all connected to a single common network.

terminal
concentrator

terminal

terminal

terminal

concentrator
terminal

terminal

terminal

concentrator
terminal

terminal

terminal

Network

concentrator
terminal

terminal

terminal

Figure 50: A hypothetical network

Since the terminals all have the same behaviour, it would be possible to describe the system by providing a single
description for a terminal that is replicated several times. Similarly the concentrators could be replicated and the
corresponding SDL model for an implementation might be as shown in figure 51. Note that figure 51 shows only the
first page of the system diagram and the interface definitions (for toUser, fromUser, toConc, fromConc, toNetwork and
fromNetwork) and synonym definitions (for NumberOfTerminals and NumberOfConcentrators) are defined on the
second page (not shown here). In general, while figure 51 is perfectly acceptable for the specification of an operational
system, it is unnecessarily complex for describing protocols and services in standards. What needs to be captured in a
standard is the minimum that implementations should conform to, and a standard needs to make clear the role of each
entity involved.

SYSTEM NetworkImplementation 1(2)

TerminalType

ConcentratorType

 Terminal
(NumberOfTerminals)
:TerminalType

Concentrator
(NumberOfConcentrators)
:ConcentratorType

Network

User toUser

fromUser
fu

toConc

toConc

tc

ft

fromConc

fromConc

tt

fc

toNW

toNetwork

tn

fromNW

fromNetwork

fn

Figure 51: An SDL system model appropriate for implementation of the network in figure 50

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 58

In the example, it would be sufficient to describe the protocol in terms of an origination terminal, a destination terminal,
an origination concentrator, a destination concentrator and the network as shown in figure 52. Each block represents a
particular role and the unnecessary complexity of multiple instances shown in figure 51 is removed.(68)Multiple
instances of SDL blocks and processes should be avoided if possible.

SYSTEM Protocol1 1(2)

Origination_
Terminal

Origination_
Concentrator

NORMATIVE

Network

Destination_
Concentrator

Destination_
Terminal

NORMATIVE

UserA

 to_
Orig_
User

 from_
Orig_
User

Awire

 from_
Orig_
Conc

 to_
Orig_
Conc

Alink
 OrigFromNW

 OrigToNW

Blink
 DestFromNW

 DestToNW

Bwire

 from_
Dest_
Conc

 to_
Dest_
Conc

UserB

 to_
Dest_
User

 from_
Dest_
User

Figure 52: A simplified SDL system model for the network in figure 50

Sometimes informative blocks and processes (such as OriginationTerminal and DestinationTerminal in figure 52) are
needed to aid the understanding of a standard, and to describe the behaviour of entities surrounding the functions that
are the subject of the standard. If the terminal and network behaviour is not needed for the concentrator-to-concentrator
example, an SDL system such as figure 53 with only the different end functions can be used. (69)Informative blocks or
processes that are not needed to aid understanding should be omitted, because such detail will obscure the minimum
requirements expressed by the standard.

SYSTEM ConcProtocol3 1(2)

Origination_
Concentrator

Destination_
Concentrator

NORMATIVE

Awire

 from_
Orig_
Conc

 to_
Orig_
Conc

Blink

 Dest_
Orig

 Orig_
Dest

Bwire

 from_
Dest_
Conc

 to_
Dest_
Conc

Figure 53: A minimal SDL model for the concentrator protocol standard example (distinct ends)

Protocols can be modelled effectively by showing the functionality of the ends separately as shown in figure 53. This
has the advantage that the description can be simplified so that only the functionality essential to the protocol is defined.
It is assumed that in this case each concentrator is sufficiently simple that it can be modelled by just one process. It is
more likely that blocks with contained processes will be needed, as shown in subsequent diagrams. When a block
contains only one process, replacing the block by the contained process reduces the complexity of the SDL. A diagram
can contain both blocks and processes.

10.3 Avoiding repetition by using SDL types
In some specifications, there may be structure and behaviour that is replicated in more than one block or process. To
avoid repetition, (70)if the same block or process is required at more than one place within an SDL specification, a
BLOCK TYPE or PROCESS TYPE should be defined from which instances can be derived.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 59

10.3.1 Defining the same behaviour at both ends of a protocol

The use of SDL types is particularly useful for standards that specify the behaviour of both ends (such as origination
and destination) of a protocol communication as a single, multi-purpose entity as in figure 54. With this approach, the
function of each end of the protocol is not so distinctly separated but actual functional behaviour is specified only once
(in the BLOCK TYPE Concentrator in the example).

SYSTEM ConcProtocol4 1(2)

Concentrator

Origination_
Concentrator
:Concentrator

Destination_
Concentrator
:Concentrator

Awire

 from_
Orig_
Conc

 to_
Orig_
Conc

t n
Blink

 Dest_
ToOrig

 Orig_
ToDest

n t
Bwire

 from_
Dest_
Conc

 to_
Dest_
Conc

NORMATIVE

Figure 54: A minimal SDL model for the example where the same function is used at each end

10.3.2 Static instances to represent repeated functionality

In some cases, a standard may suggest that process instances need to be dynamically created. Dynamic creation of
entities usually adds unnecessary complexity in the addressing of entities and should only be used in the (rare)
occasions that it is essential. If, for example, there is a multi-link concentrator standard, one origination concentrator
and two destination concentrators, as shown in figure 55, may be sufficient. In this case, it is appropriate to use the
BLOCK TYPE DestConc because the two destination concentrators have the same functionality. (71)Wherever possible,
a minimal number of static instances should be used instead of dynamically created SDL processes.

SYSTEM MultiConcProtocol5 1(2)

DestConc

Origination_
Concentrator5

Destination_
ConcentratorB
:DestConc

NORMATIVE

NORMATIVE Destination_
ConcentratorC
:DestConc

Awire

 from_
Orig_
Conc

 to_
Orig_
Conc

Blink

 Dest_
ToOrig

 Orig_
ToDest

n t
Bwire

 from_
Dest_
Conc

 to_
Dest_
Conc

Clink

 OrigToDest

 DestToOrig

n t
Cwire

 from_
Dest_
Conc

 to_
Dest_
Conc

Figure 55: Static SDL model for a multi-link scenario

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 60

10.4 Interfaces
An SDL interface is a type that defines a set of communication items (signals, remote procedures and remote variables)
realised by an agent or at one gate of an agent. The interface name can be used wherever a signal list is required (for
example on a channel or in an input) and the communication items included in the interface are then used as the signal
list. In this respect an interface definition and a SIGNALLIST definition are equivalent.

All the communication items of an interface can be defined inside the interface definition as part of the interface. By
contrast, communication items used in a signallist have to be defined separately. An interface definition can therefore
more clearly identify and group together the relevant items.

It is preferable to use an interface definition rather than a signallist definition to give an identity to a set of
communication items (signals, remote procedures and remote variables).

An interface definition has additional properties compared with a signallist:

1) An interface can inherit other interfaces (and unlike other types in SDL can inherit more than one interface) for
example:

interface callHandling inherits setupPDUs, terminationPDUs;

 In this case callHandling inherits all the items defined in setupPDUs as well as all those defined in
terminationPDUs. For any item, such as a SIGNAL named Setup, defined in setupPDUs there is a
corresponding item defined in callHandling. The SIGNAL named Setup in callHandling is distinct from that
defined in setupPDUs and if necessary they can be distinguished by a qualifier as in:

<<INTERFACE callHandling>> Setup

 By comparison when one signallist definition includes the name of another signallist definition as an element,
there is no re-definition of the included signal.

2) Every agent and agent type has an associated implicit interface (with the same name) that realizes the
communication items of the agent or agent type; that is, all signals, remotes procedures or remote variables
handled by the agent or agent type.

3) An interface definition name can be used to name a (uni-directional) gate, which defines that the gate has the
communication items of the interface as its signal list, for example as in figure 56 where DocService is used
for interface gate definitions.

DocUserType DocServerType
DocService DocService

INTERFACE DocService
INHERITS Database
<DocType, DocId>;
ADDING{SIGNAL Backup;}

Admin

Figure 56: BLOCK TYPE using an interface realized by another BLOCK TYPE

NOTE 1: Any block type that inherits DocServerType also realizes the DocService interface.

NOTE 2: Agent types that are completely unrelated to DocServerType might also implement the DocService
interface.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 61

DocUser (2):
DocUserType MainServer:

DocServerType

BackupServer:
DocServerType

DocService

DocService

Admin

Admin

AdminUser

[DocService]
[Admin]

[DocService] [Admin]

Figure 57: BLOCKs using interfaces realized by two other type-based BLOCKs

Because an interface gate has the name of the interface and the list of communication items of an interface can also be
denoted by the interface name, it is common for the same name to appear as a signal list on a channel and the gate at
receiving and of the channel. Figure 57 shows instance sets based in the types defined in figure 56. Unnamed channels
convey the signals of the interface DocService to gates that are also named DocService.

10.5 Diagrams showing relationships
For more complex systems it may be useful to include a specification area diagram to give an overview of what is
included in the system. (72)A specification area diagram (if used) should include the most important packages shown
as reference symbols with dependency shown on the diagram. For example the DocSys depends on the packages
DocPack and ServPack, which both depend on FilePack. The diagram shows what packages are needed in addition to
the system DocSys. If any of the packages is defined in another document, this can be shown by annotation or by the
name of the package.

FilePack

DocPack ServPack

SYSTEM
DocSys

Figure 58: A specification area diagram giving an overview of packages included in a system

Types used within the system are either defined within a package or within an agent diagram of the system and the
relationships between types can be shown in these diagrams together with package dependency of types.

The partitioned symbol shown in figure 59 is used to refer to a class in UML or a type in SDL. In the following the
UML terminology "class symbol" is used. The class symbols include a partial (possibly empty) specification of attribute
and behaviour properties that must be consistent with the full specification given where the entity is defined.

Class symbols for types defined in different scopes can be collected together on the same diagram, so that a model
showing relationships between the types can be drawn.

NOTE: class symbols that reference non-local types have no impact on the meaning of the SDL, so can be
included or omitted as needed. A non-local reference is by a qualified identifier rather than a name.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 62

«BLOCK»
Concentrator

setupreq;
releasereq;

ConcId;

behaviour properties area

attribute properties area

type reference heading

Figure 59: Partitioned "class" symbol - used to refer to an SDL type

10.5.1 Use of associations between class symbols

Associations can show relationships between class symbols items. Inheritance, dependency, and context
parameterisation can also be shown. Typically an association that is not inheritance or dependency is realised by
communication between interfaces. For example, in figure 60 the subscription association could be realised by the
blocks communicating using the Calling and Called interfaces, though this does not have to be the case.

«BLOCK»
Usertype

« BLOCK »
Nettype

subscription

Figure 60: A named association between two block types

Associations need not be related to any direct interface connection between the types, as illustrated by figure 61 where
there is a relationship between definitions based on the Usertype and definitions based on the Managetype.

«BLOCK»
Usertype

« BLOCK »
Managetype

grouping

«BLOCK»
Nodetype

1 1:mgtmax

client manager

Figure 61: Class symbols with inheritance and a named association

Class symbols are always references to a more complete definition that is given elsewhere. There can be one or more
class symbols for the same type and the amount of detail about the type can differ in each case. This avoids the problem
of trying to show everything about a type in a unique class symbol for the type. Figure 60, figure 61, figure 62 and
figure 63, could all be part of one SDL diagram, though it is most likely that each would be on a different page because
they cover different issues.

NOTE: The arrowheads on associations are open, compared with filled arrowheads on gates and channels.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 63

10.5.1.1 Use of a class symbol for an INTERFACE definition

«INTERFACE»

Calling

USE Setup(Setuptype);
Clear;

«INTERFACE»
MgtIf

USE manage(sub);

«INTERFACE»
Called

USE Answer;
Clear;

Figure 62: References for interfaces

Although the properties of an interface can be shown in a class symbol as in figure 62, there still needs to be a separate
definition of the interface in a text symbol. The class symbol and the corresponding definition must be consistent. The
class symbol for an interface can be used to highlight the most important items of the interface, and enables associations
of the interface with types to be shown graphically (see 10.5.1).

Class symbols in diagrams could be used to show interfaces graphically together with the agent types that can
communicate by the interfaces. The interfaces may be shown as interface gates such as Called, Calling and MgtIf on
Nettype in figure 63. The symbols in figure 62 and those in figure 63 could be conveniently placed on the same page of
a diagram.

«BLOCK»
Usertype

«BLOCK»
Nettype

«BLOCK»
Managetype

MgtIf
Calling

Called

Calling

Called

MgtIf

Figure 63: Interface gates using the interfaces referenced in figure 62

10.6 Structure diagrams using interfaces between agents
As can be seen above, class symbols can be used in SDL diagrams in a similar way to UML class diagrams. One of the
major differences between SDL diagrams and UML class diagrams is the definition of a structure in a type. The
structure shows the communication paths between agent definitions in the type and bounds on the number of instances.
The structure defined in a type is used in definitions based on the type and in sub-types. In figure 64 the types from the
class symbols in figure 60, figure 61, figure 62 and figure 63 are used for the type based block definitions. A channel
has been drawn between User and Net to define the communication link instances. This channel is connected to the
outgoing interface gate Calling and to the incoming interface gate Called in User. Similarly the channel is connected to
the interface gates Called and Calling in Net. The signals conveyed by the channel are shown by the use of the interface
names Calling and Called associated with the arrowheads of the channel, though these could have been omitted because
they can be derived from the channel connections (as has been shown for the unnamed channel for the interface MgtIf).

 BLOCK TYPE domain

User(2:max)
:Usertype

Net(1,1)
:Nettype

MgtIf [Called] [Calling]

MgtIf
Called,
Calling

Calling,
Called subscriberLink

Figure 64: A type containing structure with instances of other types

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 64

10.7 Communication and Addressing
Using signals on channels effects communication between (block and process) agents in an SDL system and with the
environment. A signal is conveyed from the connection at one end of the channel to the connection at the other end,
where the signal is either delivered to another channel or to the state In simple models, there will only be one agent
instance or connection with the environment that a particular signal can reach from the state machine that outputs it, and
no further addressing is needed. Similarly, in simple systems for a particular signal arriving from the environment on a
channel there will just one agent instance that can consume the signal.

At least one channel should represent the normative interface(s) of the system being specified and (73)all normative
channels (interfaces) should be clearly marked as being normative (using a comments box), with the assumption that
channels not marked as normative are informative and that they have been introduced into the SDL for clarity and
completeness only.

SDL processes are concurrent (usually - but see clause 10.9.1), so it is possible that signals from different processes on
the same communication path could be interleaved. If there are two different paths from a sending process to a
receiving process, it is possible for messages to arrive in a different order from the order in which they were sent. To
avoid this, (74)there should be no more than one communication path specified in each direction between one entity
and another. This makes the communication clearer, and also avoids the possibility of a signal sent on one path
overtaking a signal sent on another path.

Although SDL supports other forms of communication (remote procedures, import/export and shared data - see
clause 10.9.2), it is better to use these only in exceptional cases, for example using remote procedures may reduce
complex internal signal interchanges. These constructs imply that the calling process waits and passes control to the
called process. Such a mechanism cannot be supported easily across a normative interface. (75)Remote procedures,
import/export, or shared data should not be used to exchange information between blocks and processes.

10.7.1 Use of interface and SIGNALLIST definitions

Usually there are too many signal names for them all to be listed with a channel or gate, and as well as grouping related
signals together in an interface definition (see clause 10.4), the interface name can be used to represent the list of signals
in several places. For example, in figure 55 the list OrigToDest is used twice. This can be defined at the system level as:

 INTERFACE OrigToDest {
 SIGNAL SetupReq(SetupType),
 ReleaseReq(ReleaseType),
 DataReq (DataInfo);
 USE INTERFACE Failures; }

where Failures is another interface name. The optional interface keyword before the name clearly identifies that Failures
is an interface and not a signal, procedure or remote variable. A signal list definition could be used instead to define
such a list, but without the advantages of an interface definition. For example:

 SIGNAL SetupReq(SetupType),
 ReleaseReq(ReleaseType),
 DataReq (DataInfo);
 /* Note: thses SIGNAL definitions could be separate from the SIGNALLIST */
 SIGNALLIST OrigToDest = SetupReq,
 ReleaseReq,
 DataReq,
 (failures);

where failures is another signal list - denoted by the parentheses around the name.

To aid readability the number of signal list items on a gate or channel should be minimised. (76)A small number of
interface names (preferably one) should be used to identify the signals on a particular channel or gate rather than
listing all signals explicitly. The keyword interface before the interface name would usually be omitted for reasons of
economy of space on the diagram. A list of signal names could be used if there are only one or two signals to list.

Communication paths show the links between sending and receiving entities. The list of signals conveyed in each
direction is associated with the direction arrow on the path. These lists are optional if they can be derived from other
information but, for clarity, (77)all channels and gates should be shown with the associated interface names, signal
list names or signals. This provides the information where the reader needs it.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 65

10.7.2 Indicating the use of signals in inputs and outputs

A signal instance sent directly from one SDL agent to another will have the same name at both ends of the
communication. To indicate the different use of signals in inputs and outputs (for example a Setup considered as a
request at the sending side, and as an indication at the receiving side), the following approaches may be used:

1) giving the signal a composite name (for example, SetupReqInd, SetupRespConf);

2) a context dependent suffix attached to the signal name as a comment (see figure 65).

 DMode/*ind*/

Figure 65: A comment used as a signal name suffix

10.7.3 Directing messages to the right process

SDL allows the specification of a communication path or recipient agent to be part of an output. Although there is often
no ambiguity as the signal can only take one path to one consuming agent, adding this information can make it easier to
understand the system (see examples in figure 66). The TO construct can also be used in some cases to identify an agent
but, in the example, a comment has been used to clarify that route Clink is connected to a concentrator. The TO
construct cannot be used in this particular case because neither is the Pid value known, nor is the process name visible.
When there is more than one possible recipient of an output, TO or VIA will be used in order to be unambiguous.
(78)TO or VIA should be used in an output symbol to indicate the recipient clearly if this is not obvious from the
structure of the SDL system.

When a process sends a signal that it can also receive as an input, it is essential to use TO or VIA to avoid the
possibility (unless intentional) that the sending process receives the signal. This situation is common for signals that are
"passed on" to another process.

TO CallAgent SetupInd
(srt)

to the
concentrator
process

AudioMode
VIA Clink

Figure 66: Examples of the use of TO and VIA

SDL also provides a method for directing reply signals using the TO construct and the Pid value of the sender. If the
reply is generated before any other signal is received, TO SENDER can be attached to the output statement. If,
however, the reply has to be sent after receiving subsequent signals, then the SENDER value needs to be stored in a
variable so that it can be used later in an output. It is always safer to use this approach rather than TO SENDER because
some SDL constructs (such as remote procedures) implicitly change the SENDER value. Thus for figure 55, an
origination concentrator can reply to either of the destination concentrators by an output such as in figure 67. For the
output Release to destConcPid to be valid, DestConc has to be the name of an interface, process or process type that
handles the Release signal.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 66

DCL destConcPid DestConc;
/*DestConc is the name of the
process type for concentrators*/

Release

destConcPid
:=SENDER

Release
TO destConcPid

Figure 67: Replying to a sender

Where communication is with the environment, any differentiation between entities in the environment should be
handled by the identity or content of signals, or the identity of channels, rather than use of the TO mechanism.
Interfaces can be defined that correspond to entities in the environment and would be used on the channels leading to
the environment.

10.7.4 Differentiating messages

The only way that one message can be distinguished from another before it is received in an input is by its signal name.
It is not possible to selectively receive a signal according to its content or the sender or the communication path. When
a process reaches a state waiting for a stimulus (a signal or timer), those stimuli that can trigger a transition and those
which are saved are distinguished by name only.

NOTE: If a specific signal can be received from several processes, it is not possible to selectively receive it from
one source. The sending process identity can be determined by examining the SENDER value, but this
does not enable the name of the sending process or block definition to be (easily) determined.

To determine the SDL behaviour for each stimulus, it is necessary to define a signal for each distinct event that can lead
to a different transition in the SDL. If it is required to distinguish the same stimulus from different sources, then
different signal names should be used. (79)A different signal (with a self descriptive name) should be defined for each
distinct message event.

Although it is possible to determine the source of a signal from the communication paths leading to the receiving
process, (80)the source of the signal in an input should be indicated either by its name or by a comment with the input
of the signal because it makes it much easier to understand the description. Figure 68 shows alternative methods for
indicating the source of a signal.

from UserA Release
Release
/*from
UserA*/

UserA_
Release

Figure 68: Identifying the source of an input signal

It is possible for messages, particularly those coming from the environment, to be defined in a generic form such that it
is necessary to examine the message contents to determine what event it represents. In these cases, a process can be
used to translate the generic message into signals that have a different name for each event.

10.7.5 Multiple outputs

Multiple messages output from a single process are sent in the order that the outputs are interpreted. A single output
containing several signals is equivalent to outputting each signal in turn as listed (left to right, top to bottom) in the text
of the output. (81)There should be only one signal in each output symbol. This makes the description easier to read and
clarifies the actual order of the outputs.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 67

10.7.6 Transitions triggered by a set of signals

It is sometimes necessary for a process to trigger a transition only when it has received a set of more than one signal
(perhaps from the same entity or perhaps from different entities) although the order in which the signals are received is
not important. SDL does not have a built-in mechanism for achieving this but the behaviour can be modelled by saving
signals and treating each one in turn.

In the example in figure 69, the process is waiting for two messages (UserData, DataMode) before entering the
DataMode state. The DataMode signal is saved so, if it arrives before UserData, it is not lost and can be processed later.
Other signals that can be received are treated in the same way regardless of whether UserData has been received or not.

PROCESS OriginationTerminal 4(5)

CallinProgress

UserData

/*from User*/

Require both
Userdata and
DataModeReq

WaitDataMode
A timeout may
be appropriate
here.

DataModeReq

WaitDataMode

DataModeReq

/*from Conc*/

BeginData

DataMode

CallinProgress,
WaitDataMode Other signals

UserPhone

/*from User*/

AudioModeReq
VIA Clink

CallinProgress

AudioModeReq

/*from Conc*/

Figure 69: Waiting for multiple messages

10.8 Gates and implicit channels
If any gate on a type based agent definition is left unconnected in a diagram, implicit channels are derived to connect
the gate to any agents in the diagram and gates or channels connected to the diagram that handle the interface elements
of the gate.

If no channel had been drawn between User and Net, there would have been implicit channels joining the otherwise
unconnected gates of User and Net to the matching gate on the other block. Implicit channels are created when there are
gates (such as the interface gates Calling and Called defined for User in figure 64 derived from block type Usertype in
figure 62) which are not connected to channels. Even for this simple example the use of explicit channels to show the
communication paths makes it clear what paths exist, and in more complex examples there may be implicit channels
that were not intended between unconnected gates.

To avoid undesirable implicit channels, (82)all the gates of an agent should be explicitly connected to channels.

It is allowed to have gates on an agent definition that is not type based. Such gates are shown as gate symbols on the
outside of the block or process symbol that references the agent diagram (similar to the interface gates Calling and
Called on block type Usertype in figure 62)., but for the reasons explained above all gates should be connected to
channels but this is not allowed for such gates shown outside agents. To avoid these undesirable implicit channels,
(83)gates should not be attached to block symbols or process symbols.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 68

10.9 Other structuring mechanisms
In most blocks the contained agents (usually processes) define the behaviour of a block, and a block does not usually
have a state machine of its own. By comparison most processes just contain a state machine description and do not
contain any other agents. This keeps the structure relatively simple and easy to understand. All the state machines in
such simple systems belong to processes and potentially have parallel concurrent behaviour: that is each process
instance can potentially have its own processor (though in a real implementation there would be less - perhaps only
one). It is not required that each process instance actually has its own processor, only that the system behaves as if this
is the case.

Other structuring mechanisms exist in SDL, but make the model more complex.

10.9.1 Processes within a process

A process is allowed to contain other processes (but not blocks). Each contained process instance has its own state
machine and input queue, but all the state machines share one processing resource so that only one process instance is
scheduled at any one time: only one process instance can be interpreting a transition. When this process instance
reaches a state, one of the process instances that can enter a transition (if any) is scheduled. If there is no process
instance ready, all of the process instances wait until one is ready. Such a structure more accurately models running
processes on a single processor. The starting and stopping and other co-ordinating actions of the processes can be more
complex. In general, (84)process definitions contained within process definitions should be avoided, unless the
intention is to exclude concurrent interpretation of processes. The diagram of a process (type) with contained
processes is identical to a block (type - respectively) with contained processes except for the keyword process instead of
block in the diagram heading.

PROCESS sdu2pdu 1(2)

Converter Repackage
sdu

 from_
upper

 to_

upper

units

up_

units

down_
units

pdu

 from_
lower

 to_
lower

PduSdu

Figure 70: A process with contained processes.

10.9.2 Shared data

Any agent can contain data variables even if contains other agents and no explicit state machine. The contained agents
can access these variables. If the containing agent is a block, there is an implicit state machine for the block that owns
these variables, and access to the variables is by implicit remote procedure calls. If the containing agent is a process, the
contained processes are scheduled one at a time (as described above) and access the data directly.

The use of such data may be a convenient way to represent a common database that is accessed by different parts of the
model. In most cases an agent that encapsulates the data would probably better model this, so that it is clear what
communication is really taking place. In any case, shared data should not be used to pass information between agents
that otherwise communicate via a normative interface. (85)The use of shared data should be avoided.

10.9.3 Hiding and re-using parts of a state

In more complex systems where a large number of different signals can be received in each state, the behaviour may be
difficult to understand even after introducing multiple occurrences of the state on different pages of the diagram. In
these cases, it may be acceptable to hide the consumption of some of the less important parts of the behaviour in a state
diagram, so that input of some signals is hidden from the agent level. Hiding some sub states in this way can, in some
instances, be better than using a procedure diagram because signals that cause exit from the state are shown with the
state in the agent diagram.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 69

Use of a composite state (one with behaviour in a state or state type diagram) to hide distracting detail can make the
overall behaviour of agent easier to understand. A composite state is appropriate if the agent is considered to be in a
"global state" (such as establishing a call), but actually needs different states related to the detailed handling of some of
the signals received. In figure 71 the state CallinMonitor is based on the STATE type Monitor in figure 72 that gives
more detail for the state, in this case to receive two signals before proceeding to the Data state.

A state that has an associated diagram (a composite state) can be recognised by an exit line that goes directly to a
transition or another state. It is not always easy to see if a state is basic or a composite because:

- the symbol is the same in each case;

- there can be multiple occurrences;

- the exit line may not be obvious and there need not be an exit line.

In particular, if a state diagram (rather than a state type) is used, this has the same name as in the state symbol, which
therefore looks like a basic state. Unlike other diagrams, no specific reference symbol exists for STATE diagrams.

If, however, a composite state is based on a state type, it is clear the state symbol contains a composite state because a
colon and the STATE TYPE identity follow the state name. Also a state type diagram must have a separate reference
from the diagram in which it is defined, such as the reference to Monitor in the state type symbol in figure 71. For these
reasons (86)a composite state should (87)use a state type diagram rather than a state diagram.

PROCESS OriginationTerminal StateUse(6)

CallinMonitor
:Monitor

See STATE
TYPE diagram

UserPhone
/*from User*/

AudioModeReq
VIA Conc

CallinMonitor

AudioModeInd
/*from Conc*/

 Audio Data

Monitor

/*Data
mode*/

Figure 71: A state that references a STATE TYPE

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 70

STATE TYPE Monitor 1(1)

/* Exits when both
UserData and DataModeReq
received.

Other inputs in the
calling agent cause
exit from the state. */

 /*Data mode*/

DataUser DataConc

DataModeReq
/*from Conc*/

UserData
/*from User*/

DataWatch

DataModeReq
/*from Conc*/

UserData
/*from User*/

Figure 72: A STATE type diagram

Another advantage of using a state type, rather than a state diagram, is that a state type can be used in several places.
Monitor could be used with state Audio as in figure 73. Other inputs from Audio are defined elsewhere.

 Audio
:Monitor

Data

Figure 73: Re-use of the STATE TYPE used in figure 71

10.9.4 Using packages

When ASN.1 is included into SDL, the ASN.1 is treated as a package referenced from the SDL. Other packages that
define commonly used behaviour could also be included. In both these cases, the SDL is made simpler by not having to
repeat the contents of the package. Some dangers of using an external package are, firstly, that it may not be clear
exactly what the package does and, secondly, that it may not be obvious that the contents of the package may be
changed.

The main advantage of packages is the possibility of re-use, which for standards is less likely than for product
engineering. In a standards context it is often better to have as most of the definition within the standard itself and
packages (other than for ASN.1) would not normally be needed.

10.9.5 Exception handling

Exceptions provide a mechanism for handling situations that are possible but unusual or undesirable. Exception
handling tends to be more difficult to understand than control that depends on decisions, because a search has to be
made (both by a reader and during interpretation) for the exception handler apart from the normal control flow. The
advantage of exception handler is that normal flow can be more concise as the abnormal situations can be handled in
one place.

(88)A standard should be defined so that the language-defined exceptions (such as OutOfRange) do not occur. In
most cases this can be achieved by explicit checks.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 71

11 Specification and use of data
A very important part of any protocol or service standard is the specification of data. SDL has its own built-in data
types and mechanisms to create new data types. However, the standardized data type notation, ASN.1
(see ITU-T Recommendation X.680 series [8] [9][10] [11], is usually used in modern telecommunications standards to
specify messages and other data, particularly for normative interfaces. ASN.1 data types may be used as an alternative
to SDL data types by making these available to the SDL through ASN.1 modules used as packages
(see ITU-T Recommendation Z.105 [5]).

NOTE: Strictly speaking SDL data types are called 'sorts'. However, in the present document for the sake of
simplicity the term 'data type' is used both in the context of using ASN.1 and SDL sorts.

An advantage of using ASN.1 is that the ASN.1 data types can be associated with encoding rules, whereas there is
currently no standardised way of associating encoding rules with SDL data types.

(89)ASN.1 should be used to specify data and the ASN.1 data definitions should be made common to both the SDL
specification and the non-SDL parts of a standard.

This approach of common data has the significant advantage of reducing the possibility of confusion and mistakes that
can be introduced if there are separate data descriptions of the same or similar data structures.

There are no operators in ASN.1. However, when ASN.1 is used with SDL, the basic types of ASN.1 (such as
INTEGER) are mapped to the corresponding SDL types (in this case Integer) and therefore the predefined SDL
operators can be used with these types. Similarly an ASN.1 SEQUENCE (or SET) is taken to be an SDL STRUCT, an
ASN.1 CHOICE an SDL CHOICE, and a SEQUENCE OF (or SET OF) an SDL String. Table 2 shows the mapping
between some ASN.1 and SDL.

Table 2: Some ASN.1 types and corresponding SDL data types

ASN1 SDL
BIT Bit

BIT STRING Bitstring
BOOLEAN Boolean
CHOICE CHOICE

OCTET STRING Octetstring
SEQUENCE STRUCT

SEQUENCE OF String
SET STRUCT

SET OF Bag

11.1 Specifying messages
One of the main purposes of using SDL in an ETSI standard is to provide an unambiguous description of the exchange
of messages over normative interfaces.(90)SDL signals should be used to represent normative messages with ASN.1
describing the parameters carried by the messages. The behaviour diagrams of SDL agents describe dynamic
mechanisms that control the sending and receiving of these messages.

NOTE: The details of these dynamic mechanisms are not usually normative and the SDL that describes them
should be regarded as just one description of any number of possible alternative descriptions. What is
normative is the behaviour that the combined SDL state machines exhibits over the normative interfaces
with regard to message interactions.

Even though an ASN.1 module will specify the complete set of messages and message parameters relevant to a
standard, it is unlikely that all the message parameters will be directly relevant to the SDL model. Note that even if the
ASN.1 data type definitions are complex, only those parameters relevant to the dynamic requirements of the standard
need actually be used in the SDL behaviour descriptions. In this way, the complexity of the data type definitions does
not adversely affect the readability of the SDL specification.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 72

11.1.1 Structuring messages

Except in the very simplest of cases, (91)the top-level parameters of messages should be contained in a single
structured type (e.g., ASN.1 SEQUENCE or SET) rather than specified as a list of simple types.

For example, the longer but considerably more meaningful specification in a) below, is preferable to the more open
simple signal specification in case b). Although a) could be completely expressed in SDL (using STRUCT and Bitstring
with SIZE), ASN.1 is used as this the preferred notation. In b) no ASN.1 is necessary because the SIGNAL is defined
just in terms of Bitstring mapped from the ASN.1 data type BIT STRING.

a)

 SIGNAL SETUP(SETUPtype); /*in SDL */

 -- in an ASN.1 module used as a PACKAGE by the SDL
 SETUPtype ::= SEQUENCE
 { header Header, -- Note that these examples follow the ASN.1 convention of
 identifier Identifier, -- starting identifiers with lower case letters and starting
 extensionBlock ExtensionBlock -- type references with upper case letters.
 }

 Header ::= BIT STRING (SIZE (8..32))

 Identifier ::= BIT STRING (SIZE (8..8))

 ExtensionBlock ::= SEQUENCE
 { callReference CallReference,
 partyReference PartyReference
 }

 CallReference ::= BIT STRING (SIZE (4..8))

 PartyReference ::= BIT STRING (SIZE (4..8))

 callref15 BIT STRING ::= '00001111'B

b)

 /* in SDL */
 SIGNAL SETUP (Bitstring, Bitstring, Bitstring, Bitstring);
 /* NOTE that BIT STRING in ASN.1 is mapped to Bitstring in SDL */

When compared with item b), the ASN.1 in item a) has the benefit of being able to give explicit names to message
parameters in the SDL signal. It uses SIZE restrictions in a readable manner. Finally, an advantage of using ASN.1 in
this example is that the ASN.1 data types, the user defined SETUP and the pre-defined BIT STRING, can be associated
with encoding rules.

The use of structures has the added benefit of allowing the easy capture and manipulation of the entire contents of
messages rather than on a parameter-by-parameter basis. Figure 74 shows how the contents of an incoming message can
be simply output on another channel. In this example, setupOut has been declared as a variable of a structured type (see
below).

SETUP
(setupOut)

SETUP
(setupOut)
VIA Sub_Interface

From
NetWork

Figure 74: Transferring message contents from Input to Output

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 73

A minor drawback of using complex structures is that the notation to refer to the elements in the SDL description may
be longer. For example, if two variables, setupExtensionblock and setupOut were declared as follows:

 DCL setupExtensionblock ExtensionBlock;
 DCL setupOut SETUPtype;

an assignment to store the ExtensionBlock value would be:

 setupExtensionBlock:= setupOut.extensionBlock

and an assignment in the SDL to the callReference to output callref15 would be:

 setupOut.extensionBlock.callReference:= callref15

Clause 8.2 gives details of how operators can be used to hide long references. It also shows how operators may be
added to ASN.1 types.

In the above example a full stop (.), was used to denote field selection. SDL also allows an exclamation mark (!) to be
used with the same meaning. Using an exclamation mark makes it clear that field is being selected rather than a method
applied to the variable, whereas the dot notation is normal for both cases in many other languages. (92)For readability
the same symbol (exclamation mark or full stop) should be used for all field selections in one specification.

11.1.2 Ordering message parameters

Protocol messages are most easily specified using the ASN.1 constructors, SEQUENCE or SET. (93)If the parameters
in a message have to appear in a fixed order, then the ASN.1 constructor SEQUENCE should be used to specify the
message contents, as in the following:

 SETUPin ::= SEQUENCE
 { header Header,
 identifier Identifier,
 inExtensionBlock InExtensionBlock
 }

However, it is common that a protocol specification will allow elements to appear in any order. (94)If the parameters of
a message may appear in any order, then the ASN.1 constructor SET should be used to specify the message contents.
For example, in the extension block of the previous example it could be required that it is possible to receive the
callReference and the partyReference in either order, in which case this would be specified as follows:

 InExtensionBlock ::= SET
 { callReference CallReference,
 partyReference PartyReference
 }

NOTE 1: In ITU-T Recommendation Z.105 [5] SET and SEQUENCE are treated in the same way in SDL, and
therefore parameters are required to be in a specific order in SDL.

Another useful concept in ASN.1 is the ability to specify parameters as OPTIONAL. In the following example the
partyreference may be omitted

 ExtensionBlock ::= SET
 { callReference [1] CallReference,
 partyReference [2] PartyReference OPTIONAL
 }

Finally, ASN.1, allows the specification of unions through the CHOICE construct, for example:

 GeneralMessage := CHOICE
 { setup SETUPtype,
 release RELEASEtype,
 acknowledge ACKNOWLEDGEtype
 }

NOTE 2: Tags ([1] and [2]) have been introduced in the SET ExtensionBlock to enable encoders to differentiate
between the two parameters, but are otherwise ignored in SDL models. Alternatively automatic tagging
could be used, as is assumed in the CHOICE GeneralMessage.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 74

11.1.3 Transposing other message formats

In many lower-layer protocol standards, messages are specified using a tabular format. These tables will have to be
transposed to ASN.1 or SDL data types in order to be used in an SDL specification. In these cases it will probably be
adequate to specify a simplified form of the messages (e.g., by omitting various message parameters). (95)When
mapping messages described in another format (such as tables) to a simplified form as ASN.1 or SDL data types, the
structure of the simplified messages should be kept as close as possible to the structure of the original messages and
the names of messages and their associated parameters should be preserved. The important point is that messages
should be reduced to a simpler format in a consistent manner and that the mapping from the real messages to the
simplified ones in the SDL is well documented and obvious. Conversely, parameters that are not specified in the full
description of the messages should not be introduced in the transposed formal specification.

11.2 Specifying data that is internal to the SDL model
Data that is internal to the SDL model is data that is not conveyed over a normative interface. Such internal data may be
specified using either SDL types or ASN.1. In most cases it will be simpler to use SDL data types. SDL directly
supports the same features as ASN.1 such as SIZE, OPTIONAL and CHOICE.

The main benefit of specifying the data in SDL is that the data type can be directly embedded in the SDL diagrams,
whereas ASN.1 data types have to be included by a USE package clause that refers to ASN.1 modules containing the
data type definitions.

While the mappings provide basic operators for using ASN.1 types in SDL, data type specific operations can only be
added to an inherited type or some (otherwise unrelated) type. (96)When there are data type specific operations for
internal data, it is usually better to use SDL to define the data type rather than ASN.1 so that the operations can be
defined as part of the data type.

A minor disadvantage of ASN.1 (compared with SDL data types) is that if one ASN.1 type is defined as based on
another type, the values defined on either type are values of both types: the types are equivalent. In SDL the user can
choose to introduce either another name (as in ASN.1), or a new data type that inherits the same properties but is
distinct from the original. When such a new type is introduced, items of one type cannot be used (by mistake) where the
other type has been specified. This feature is generally known as "strong type checking".

SDL has two predefined array constructor data types, Array and Vector. These do not have a direct correspondence to
data types in ASN.1 and it may be simpler to use these predefined data types rather than define types in ASN.1. It may
also be simpler to define some data types directly in SDL using the predefined String constructor data type. In all these
cases variables and values of the constructed data type can be indexed to select an array, vector or string element.
Indexing of Array, Vector and String constructs is denoted by the index expression in square or round brackets after the
variable (or value). (97)For readability, in one SDL specification the same brackets (square - which are distinct from
other uses, or round) should be used for all Array, Vector and String indexing.

11.2.1 Use of symbolic names

Clauses 9.1.4 and 9.1.6 recommend that SYNONYM definitions or enumerated types should be used to specify
symbolic names that can be used as decision labels and that convey meaningful information to the user. When the data
type is specified in ASN.1, an ASN.1 value definition can be used instead of an SDL SYNONYM definition. For
example, in an ASN.1 module

 maxNumberLength INTEGER ::= 20

is equivalent to the SDL SYNONYM definition

 SYNONYM maxNumberLength INTEGER = 20;

The use of the symbolic name maxNumberLength for the value both makes the description more understandable and
allows the actual value to be specified in one place only. In this way, the value can be simply changed by changing the
definition and all uses (in expressions, parameters, data type definitions, size constraints, decisions and so on) will then
use the updated value. (98)Whenever possible symbolic names should be used rather than explicit value denotations
(such as 123, '0110'B). Either an ASN.1 value definition or an SDL SYNONYM can be used to define a symbolic
name. The explicit data value should appear just once: in the definition the symbolic name.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 75

It is often the case that there are a limited number of values for a particular data type, and although the actual
transmitted encoding may be important, in the specification of the behaviour it is only necessary to compare one value
with another and there is no need for other operations such as arithmetic on the values. The appropriate data type is an
enumerated type to introduce symbolic literal names for the values. Both ASN.1 and SDL allow an Integer value to be
associated with the literal. For example:

 LineState ::= ENUMERATED
 { outOfService (1),
 inServiceFree (2),
 inServiceBusy (6) }

is equivalent to the SDL:

 VALUE TYPE LineState;
 LITERALS
 outOfService = 1,
 inServiceFree = 2,
 inServiceBusy = 6;
 ENDVALUE TYPE LineState;

Wherever possible (99)ASN.1 ENUMERATED or SDL literal list types should be used for data that consists of a
collection of names. Numeric values should be associated with the values of a data type by using the named numbers of
an ASN.1 ENUMERATED or SDL literal list type.

If it is not possible to use a data type to define symbolic names for values, the name can be defined as an ASN.1 value
definition or SDL SYNONYM.

11.2.1.1 Using data TYPE and SYNTYPE

The VALUE TYPE (or OBJECT TYPE see 11.2.1.1.1) syntax can be used to specify an application data type in SDL.
A data type defined as a VALUE TYPE has variables that are associated with values of the type: the predefined types
(Integer, Boolean etc.) are defined using VALUE TYPE.

An SDL data type has a set of values and a set of operations that can be inherited by another data type. An operation can
be an OPERATOR, which does not modify any of its parameters but can return a result, or a METHOD, which is
applied to a variable and can modify this variable.

SYNTYPE defines a range of another data type. Typically the range defines a subset of the values of the parent data
type, for example:

 SYNTYPE
 Int16 = Integer CONSTANTS (0..65535);
 ENDSYNTYPE;

The range can include all values of the parent data type, in which case the SYNTYPE is particularly suitable for
renaming existing types, for example:

 SYNTYPE
 DestPointCode = Int16;
 ENDSYNTYPE;

A SYNTYPE that does not define a subset of the values of the parent data type, can be used to rename a data type to an
alternative name.

VALUE TYPE, on the other hand, is more suitable for specifying new data. In general (100)VALUE TYPE should be
used to define a new data type in a specification while SYNTYPE should by used to rename or constrain the values of
existing data types.

It is worth noting that the following ASN.1 specification:

 Btype::= Atype

is equivalent to the SDL:

 SYNTYPE Btype = Atype
 ENDSYNTYPE Btype;

These data types have compatible values. An Atype value can be assigned to a Btype variable or vice versa.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 76

11.2.1.1.1 Using OBJECT TYPE

When a data type is defined as an OBJECT TYPE, a variable of that data type is associated with references to values. In
the following, such a variable is called an object variable.

When a value is assigned to an object variable, an object is created that contains the value. When an object is assigned
to an object variable, the variable then references the object, so that it is possible for two object variables to reference
the same object. Therefore OBJECT TYPE data is more suited to the data structures that will be created dynamically
with elements linked by the reference characteristics of objects: for example linked lists, or trees.

OBJECT TYPE parameters of signals are either converted to values or require a common container process. When such
a signal is used in an output in a process type whether the parameter is passed as a value or an object will depend on the
context of process definitions based on that type. If the object is passed, two processes could refer to the same object
and there is the possibility of multiple processes changing the same object. If a value is passed then there is little benefit
in having an object parameter. For these reasons (101)OBJECT TYPE should be avoided as the data type for signal
parameters.

A data type that is defined as a VALUE TYPE can be used as an OBJECT data type by prefixing the data type name
with the keyword OBJECT AND THEREFORE DEFINES AN OBJECT TYPE. Similarly an OBJECT TYPE can be
used as a VALUE TYPE BY PREFIXING A DATA TYPE NAME WITH VALUE.

When inheritance is used with OBJECT TYPE definitions, one result is that some operations using the data types
involved are "polymorphic", which means the actual operation to be applied depends on what happens when the system
is interpreted. Because the polymorphic character of OBJECT TYPE definitions can make the use of the data difficult to
understand, (102)OBJECT TYPE definitions(or a data type name prefixed by OBJECT) should be used only when the
data cannot be simply expressed with a Value type.

All data types inherit some properties from the Any data type, an OBJECT TYPE that is a root type for all data. Use of
the (103)Any data type to define variables should be avoided, because the resulting behaviour may be difficult to
understand and may have dynamic errors.

12 Using Message Sequence Charts (MSC)

12.1 Introduction
The Message Sequence Charts (MSC) language is defined in ITU-T Recommendation Z.120 [7].

A basic MSC describes a scenario and consists of interacting instances. An instance is an object that has the properties
of a certain entity. On an instance, the ordering of events is specified. Events can be message outputs, message inputs,
local actions and timer events.

An HMSC (High-level Message Sequence Chart) is a roadmap of scenarios, where the details are hidden and described
in basic MSCs or HMSCs that are referenced in the HMSC.

12.2 Relationship between MSC and SDL
As far as possible, entities in MSC should correspond to SDL entities. Normally, it is only useful to specify a subset of a
system's behaviour in MSC. It is also common not to reproduce the complete SDL architecture in MSC, but to represent
only the important communicating parts with MSC instances.

In the ITU MSC recommendation, the interpretation of a message input is not described. (104)When MSC is used in
combination with SDL, a message input in MSC should correspond to a signal consumption in SDL.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 77

12.3 Presentation and layout
There should be a reasonable amount of information in an MSC diagram, making the specification easy to comprehend
but (105)each MSC diagram should be limited to the information that fits into one printed page. Additionally,
(106)when used in a standard, an MSC diagram should always be surrounded by a diagram frame and have an
attached name.

The structuring mechanisms in MSC can be used to avoid large diagrams. If splitting a scenario into several distinct
MSC diagrams is not feasible, vertical paging of diagrams can be used. If vertical paging is necessary, the instance
heads and the MSC diagram name should be repeated on each page. The instance end symbols must only appear on the
last page. However, horizontal paging should be avoided.

(107)A clear spacing between symbols in an MSC diagram should be maintained both horizontally and vertically.
This makes it easier for each instance and message to be clearly distinguished from any others.

(108)An instance axis should always be terminated at the end by either an instance end symbol or a stop. If vertical
paging is used, an unterminated instance axis indicates that the diagram continues on another page.

12.3.1 Annotations

There are four different annotations in MSC:

- note:

 appears between items of texts;

- comment symbol:

 can be attached to events or symbols;

- text symbol:

 may contain larger texts for documentary purposes;

- informal action:

 may be used to informally express internal behaviour of an instance (see also clause 12.10).

As in any formal language, (109)annotations help to improve the understanding of an MSC description and should be
used freely.

Another very useful practice is to annotate which scenarios (or parts of scenarios) that are normal from those that are
exceptional.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 78

Connection_
Handler CallingParty CalledParty

This scenario shows the handling
of a second connect request.

msc Setup_Request

The ConnectionType
parameter is optional

Connect_Accept

'check nr of
free encrypted
connections'

ConnectAck

/* CalledPartyInfo */

ConnectRequest

/*
CallingPartyInfo,
CalledPartyInfo,
ConnectionType = Encrypted
*/

Text
symbol

Note

Informal
action

Comment
symbol

Figure 75: Annotations in MSC

12.4 Naming and scope
Most MSC names are globally visible within the set of MSC and HMSC diagrams defined by one MSC document
specification. An instance kind name is visible outside of its MSC document. Gate names and MSC formal parameter
names are visible in the scope of one MSC diagram.

As far as possible, (110)names in an MSC should be the same as the names of corresponding entities in the SDL. For
example, an MSC message name should be the same as its corresponding SDL signal name, and an MSC instance
should have the same kind name as the corresponding SDL process or block.

An entity may have the same name as another visible entity if the two entities are of different classes. A message may
thus have the same name as a timer or an instance. (111)Entity names should be unique within a specification.

12.5 MSC document
An MSC document is a collection of MSCs and HMSCs (figure 76), declaring used instances, messages, timers and
MSC References. It is also the defining document for an instance kind. An MSC document might specify an inheritance
relationship between two instances (instance kinds), allowing specialization of used scenarios (MSC References).

Since an MSC document is not needed unless instance decomposition, instance kind inheritance or the data concepts are
used, it can often be omitted in order to reduce complexity of the specification.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 79

mscdocument AllScenarios
inst user;
inst sys;

normal exceptional

m1 m2 m3 m4

m11

msc normal

m1

m2

msc exceptional

m3

m4

msc m1

user sys
mess

m11

Figure 76: Collection of MSC diagrams

12.6 Structuring
There are two distinctive mechanisms for structuring MSC specifications. The first is related to the logical system
architecture. The second is related to behaviour.

12.6.1 Architecture

12.6.1.1 Instance

An instance is an object of an entity specifying behaviour by means of events that are ordered on the instance axis.
More than one instance might be used to describe one entity. Every instance has a name associated with it and an
optional kind name, e.g. process name, which indicates which entity the instance is describing. In relation to SDL, the
kind name can be preceded by a kind denominator which mat be one of the reserved words system, block or process.
An instance without kind name will have its own name as an implicit kind name. (112)If there is an associated SDL
specification, each MSC instance should have a kind name and kind denominator corresponding to the name and
entity kind of the equivalent entity in SDL.

It is easy to add more and more instances to an MSC in an attempt to make it easier to understand. Unfortunately, this
can have the opposite effect by adding complexity which can be an unnecessary distraction. So, (113)the number of
instances included in an MSC should be kept low to maintain a focus on the normative interface(s) and important
entities in the logical or physical model.

The instance name (together with the optional kind name) may be placed above or inside the instance head. For the sake
of consistency, (114)if the kind name is present in an MSC instance, the instance head symbol should contain the
instance name with the kind name placed above the symbol, as shown in figure 77. Otherwise both names have to be
separated by a colon symbol.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 80

CallingParty
Environment

Terminal

process
TerminalHandler

msc CallTermination

instance head

instance end

kind denominator

kind name

instance name

Figure 77: Placement of instance name and kind name

12.6.1.2 Instance decomposition

Behaviour described by several instances can be composed into one instance, hiding the intra-communication between
the original instances. This means that the same part of a scenario is described in (at least) two diagrams, firstly on the
higher level and secondly on a lower level, showing the internal behaviour of the decomposed instance. Furthermore, a
decomposed instance needs a defining MSC document in which used instances, messages and MSC References are
defined. (115)Instance decomposition should be avoided in MSCs because of the complexity it might introduce.

It is however good practice to represent a higher-level SDL entity with an instance, without describing the lower-level
behaviour, if this abstraction improves the understanding of the overall behaviour.

12.6.1.3 Dynamic instances

Dynamic instances in MSC can be described by using the instance creation and instance stop concepts. Generally,
standards describe a static view of the components avoiding the more complex dynamic identity relations and so
(116)dynamic instances should be avoided in MSCs. Instance creation and instance stop should only be shown if they
are a vital part of the specification.

Note the difference between the instance end and the instance stop. The instance end terminates the description of the
behaviour of an instance within one MSC diagram, while the instance stop describes the termination of the entity that
the instance represents.

12.6.1.4 Environment

In general, one MSC specifies the possible behaviour of only a part of a certain system. Everything else is referred to as
"the environment" with which messages can be interchanged. The environment can be considered to be one or several
instances that communicate with the instances in the MSC. Graphically the environment is represented by the diagram
frame. Communication with the environment is provided by message arrows connected to the frame (see figure 78).

Destination_
Network

Originating_
Network

msc Successfull_Setup

CallRequestAck

CALL_PROCEEDING

CONNECTED

ALERTING

CallAnswer

CallAlerting

IncomingCall

SETUP

CallRequest

Figure 78: Messages being sent to and from the environment

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 81

There are situations when using the frame to represent the environment is counter-intuitive. In the example shown in
figure 78, a natural, but not justified interpretation would be that the message CallAlerting is sent in response to
message IncomingCall. In fact, message CallAlerting might be sent before message IncomingCall, possibly from a
different entity than the receiver of message IncomingCall.

As an alternative to the environment frame, specific instances may be used to describe the interaction of the system with
the environment. When there is communication with more than one distinct environment entity, explicit instances for
the environment enable the description of ordering. and allow a concrete behaviour description of external entities that
interact with the system under consideration. (117)Instances with instance kind name "environment" should be used to
represent the environment in an MSC.

Destination_
Network

Originating_
Network CallingUser

Environment
CalledUser

Environment

msc Succesfull_Setup

CALL_PROCEEDING

CONNECTED

ALERTING

SETUP

CallRequest

CallRequestAck

IncomingCall

CallAlerting

CallAnswer

Figure 79: MSC with instances representing the environment

12.6.2 Behaviour

In MSC, there is a possibility to divide complex scenarios into smaller, named descriptions. There are several reasons to
do this:

- making the specification easily readable and suitable for print-out;

- reuse of common behaviour parts, ensuring easier maintenance of the specification;

- hiding details while focussing on message exchange;

- keeping logically distinct parts separate.

This structuring of behaviour is realized by allowing expressions on MSC parts. The parts can be a group of events or
an MSC Reference. In an expression, the following relationships between the parts might be expressed:

- sequence (seq);

- alternative (alt);

- optionality (opt);

- repetition (loop);

- parallelism (par);

- exception (exc).

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 82

These expressions might be used in three different ways or contexts:

- HMSC;

- MSC references in basic MSCs;

- In-line expressions in basic MSCs.

An MSC Reference is used to refer to other MSC or HMSC diagrams by means of their MSC name. MSC References
may be used within basic MSCs or in HMSCs.

Generally, unrestricted use of the expressions can cause an explosion of the number of scenarios, which may cause
problems with validation.

12.6.2.1 High-level MSC (HMSC)

The composition of a set MSCs is specified by means of a High-level MSC (HMSC) which is a roadmap of the
contained MSC References. HMSCs provide a graphical way of describing the combination of Message Sequence
Charts, typically visualizing sequence, alternative and loop relationships.

(118)HMSCs should be used to specify a high-level view of scenarios which are defined in other MSC or HMSC
diagrams.

Apart from MSC References, an HMSC can also contain conditions, start, stop and connection symbols.

(119)Connections should always be used when HMSC flow lines join or merge to distinguish them from simple
crossing lines.

Unlike plain MSCs, instances and messages are not shown within HMSCs, which focus only on composition aspects.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 83

Token based security No Token Support
available

MSC Network_Handover

Link_Capability

 Authentication

Encryption_Startup

Token_NW_signalling

Force_Handover

Setup_Radio_Connection

Handover_Completion

Info_Transfer

Association

msc NetworkHandover

Figure 80: Example of HMSC usage

The annotations, "Token based security" and "No token support available" help to provide some helpful functional
segregation within the HMSC shown in figure 80. Such (120)annotations should be used within HMSC to explain the
purpose of different alternative branches.

HMSCs are hierarchical in the sense that an MSC Reference may refer to an HMSC and, consequently support a top
down design approach very well. In order to maintain sufficient transparency and manageability, (121)References to
other HMSCs should be used within HMSCs to ensure that a logical structuring of described behaviour is achieved.
This has the added advantage of keeping to a minimum the number of symbols in any one HMSC.

An MSC Reference may contain a textual operator expression instead of a single Reference name. The textual
expression offers the same expressiveness as the graphical notation with the one exception that loop boundaries can be
given in the textual form. MSC Reference expressions are useful for a compact representation, in particular of several
alternatives, but makes the description less intuitive. To improve readability, (122)graphical HMSC expressions should
be used in preference to textual Reference expressions.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 84

msc StartUp_Connection

StartUp

idle

loop <1,4>
ConnectionRequest

connected idle

msc StartUp_Connection

StartUp

idle

ConnectionRequest

connected idle

Figure 81: HMSC with reference expression
and corresponding HMSC with graphical relations between the references

12.6.2.2 MSC reference in basic MSC

Behaviour parts can also be reused or abstracted in basic MSCs by using MSC References connected to the instances. In
general, the number of MSC References should be kept low within a plain MSC in order to focus on the message
interchange.

HMSC References may be included in basic MSCs but referring to "overview" charts from detailed sequence
specifications can be confusing. Therefore, (123)Plain MSCs should not include HMSC References.

MSC References in basic MSCs should be used as a structuring means and for the reuse of scenarios. Figure 82 shows
an example of MSC References used in the specification of a test purpose preamble and postamble. As such, the MSC
Reference plays a similar role to that of a procedure in SDL. (124)If the same scenario appears in several MSCs, it
should be specified as an MSC of its own and referenced from other MSCs.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 85

SCF CSF_SSF SigCon_A

msc IN2_Basic

O_S2P_Preamble

Release_Call_PostAmble

InvokeReq

ResultInd

SigCon_A CSF_SSF SCF

msc O_S2P_Preamble

ContinueReq

InvokeReq

InvokeInd

SetupInd

Figure 82: MSC references in basic MSC

To ensure readability, (125)each message involved in an MSC (?that is referenced from a basic MSC?) should have
both its output and input described within the diagram.

12.6.2.3 Inline expression

An inline expressions can be looked upon as an expanded form of an MSC Reference expression used in a basic MSC
context. They are ideally suited to the compact description of several small variants, typically covering only a small
section of the complete MSC which means that the inline expression should contain only a few events. (126)When it is
not feasible to use MSC References to describe different sequence structures, inline expressions should be used.

Inline expressions are used to define concisely several different sequences that can occur at the same place in the
enclosing diagram. A diagram using an inline expression is equivalent to several diagrams where the inline expression
is replaced by each of the defined sequences in turn. Inline expressions can use the following operators on events:

- sequence (seq);

- alternative (alt);

- optionality (opt);

- repetition (loop);

- parallelism (par);

- exception (exc).

Inline expressions can be nested. Inline expressions give the benefit of conciseness at the expense of making a
specification more complex and, thus, more difficult to read. (127)The use of multiple inline expressions in a single
MSC diagram should be limited to avoid an unnecessary explosion in the number of implicit scenarios.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 86

Network_B Network_A user_A

alt

msc Release

Fail

RespTimer

RespTimer

RespTimer

Off_line

Deactivate

Cancel

Success

Figure 83: Usage of inline expression

If inline expressions are used, (128)each message involved in an inline expression should have both its output and
input described within the inline expression in order to make an intuitive description.

In certain situations, inline expressions are the only descriptive way to illustrate a scenario. For example, after setting a
timer an alternative can be used to describe both the normal course of action and the exceptional behaviour resulting
from a timeout. A scenario with two or more alternative courses of action might either be described in an HMSC, where
the alternative is described by different MSC References on alternative paths, or in a basic MSC, where the alternative
is described by alternative inline expressions. (129)HMSCs should be used to highlight significant alternative or
optional behaviour paths but; if the differences are only minor, these could be described within an MSC using inline
expressions.

12.7 Data
Although in many cases it is not necessary to model data within an MSC in a standard, it can sometimes be beneficial to
use data related more to the description than to the described system. An example of this usage is specification data
needed to reduce the complexity of the behaviour (e.g. loop boundaries and guard conditions on alternatives).

An example of using system related data in MSC is describing or limiting the parameter data that can be sent by
messages, see figure 84.

A consequence of using data in MSC is that the specification becomes more detailed and complex. If message
parameters should be stated when describing message passing, then the message needs to be declared in advance,
together with the data type declarations in a surrounding MSC document.

When data (type information or values) can enhance the understanding of an MSC, this may be indicated informally by
notes, comments or informal actions, see figure 86. To formally express data in MSC can lead to an unnecessarily
complex specification that can be difficult to understand and maintain.

(130)Data types and expressions introduce complexity to a specification and it is therefore preferable to omit them
from MSC diagrams. As an alternative, annotations may be added to describe the data if more detail is needed. Data
should be described formally in MSC only when greater formality than can be achieved by using annotations is
required.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 87

Net CalledParty CallingParty

msc CallRequest

ConfirmCollectCall

(CallingPartyInfo)

CallRequestAck

(CalledPartyInfo)

CallRequest

(CallingPartyInfo,
CalledPartyInfo,
CallType)

IncomingCall

OffHook

Confirmed

opt

when (CallType
= CollectCall)

mscdocument Scenarios

inst CallingParty
 variables
 CallingPartyInfo,CalledPartyInfo:SubscriberInfoType;
 CallType: CallType;
inst Net;
inst CalledParty;
msg CallRequest:(SubscriberInfoType, SubsriberInfoType,CallType);
msg ConfirmCollectCall,CallRequestAck: (SubstriberInfoType);
msg IncomingCall, OffHook, Confirmed;

language SDL;
data
 “use Predefined;
 use ParameterTypes_ASN1;”;

CallRequest

Figure 84: Formal usage of data in MSC

12.8 Message
An MSC message describes two asynchronous events: a sending event that is performed by the sending instance and a
receive event that is handled by the receiving instance. The receive event is optional (see clause 12.8.1).

Messages may cross instances that are placed between the sender and receiver. By rearranging the order of the
instances, instance crossing messages can be minimized. (131)The crossing of MSC instances by messages should be
minimised by placing frequently communicating instances close to each other wherever possible. However, the
natural and logical ordering of entities should be considered to be more important than strict adherence to this guideline.

A message arrow may be drawn either horizontally or with a downward slope. Both forms are equivalent but the
downward slope is sometimes used informally to indicate the passage of time. Since this is prone to misinterpretation,
(132)delay or the passage of time should be described by the time concepts in MSC (see clause 12.13).

Messages with downward slopes can also be used to describe the overtaking of messages. However, (133)the
unnecessary crossing of messages should be avoided since it obscures the meaning of an MSC, see figure 85.

In general, two or more events may not be attached to the same point or at the same level on an instance axis. There is
one exception to this rule. An incoming event and an outgoing event may be attached to the same point or at the same
height. This is interpreted as if the incoming event is drawn above the outgoing event.

Although both representations are equivalent, within a standard, (134)an MSC should show an outgoing event below
the incoming event that preceded it as this presentation gives a clearer description of the ordering relationships.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 88

The two diagrams in figure 85 are semantically equivalent, but the layout in MSC m2 makes the scenario easier to
comprehend.

i2 i3 i1

c d

a b
i3 i2 i1

d

c

b

a

msc m1 msc m2

Figure 85: Clear ordering of events and separation of message lines

MSC does not require the parameters of the message to be described. However, providing an informal type name in a
message is often useful when creating an SDL specification with an MSC model as input. In some cases, it might also
be of value to indicate that a parameter has a certain value if this improves the understanding of the scenario. In
protocol standards it is not unusual for a message to have an extensive parameter list defined and the inclusion of such
lists with all messages can make an MSC very difficult to read.

The description of MSC message parameters may differ from SDL signal parameters regarding the level of detail. In a
single scenario, it is common to highlight only the interesting aspects of the message parameters i.e.; the part that
affects the further behaviour of the scenario. This abstraction is a very useful mechanism that ensures that the scenarios
are not too detailed and complex.

MSC message parameters have a formal meaning in that they illustrate how values are transmitted together with the
message. These values must conform to the corresponding parameter data type in the message declaration. However, in
the interests of clarity, (135)only those parameters that are absolutely necessary for the understanding of the message
sequence should be included with an MSC message. In order to be able to do this while still complying with the MSC
syntax, (136)if incomplete message parameter information is to be shown in an MSC, this should be given in a note,
following the message name as shown in figure 86.

Net CalledParty CallingParty

msc CollectCall

ConfirmCollectCall

/* CallingPartyInfo */

CallrequestAck

/* CalledPartyInfo */

CallRequest

/*
CallingPartyInfo,
CalledPartyInfo,
CallType = CollectCall
*/

IncomingCall

OffHook

Confirmed

Figure 86: Indication of message parameter information

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 89

12.8.1 Incomplete messages

Besides the specification of successful transmission of messages, incomplete messages can be described in MSC. An
incomplete message communication is represented by a lost message symbol or a found message symbol. A lost
message is a message output for which the message input is unknown. A found message is a message input for which
the message output is unknown. Lost messages may be used to describe the reaction of a system in error cases such as
in case of an unreliable transmitter.

(137)Lost and found message should normally not be used in MSCs because they correspond either to the behaviour of
the environment or the behaviour of the underlying system. They should not be used to describe traces of normal
behaviour of systems.

A situation where a lost message may be used is in a scenario that describes how re-sending of lost messages is handled.
Found messages may be used when a message can be sent by several possible instances, and the sending identity is not
relevant to the scenario.

In SDL, unsuccessful signal transmission can only be described in an indirect manner.

TFControl SessionHandler User_a

msc Start_TF_fail

TFInd

StartFailed

Waitresp

Start_TF

TFReq

Supervisor ClientA Resource1

Free

Busy

Free
If SenderId is
the Supervisor or
the Allocated

msc ResourceAlloc

DeAllocated

/* ResourceId */

DeAlloc

/* SenderId */

Alloc

/* SenderId */
Allocated

/* ResourceId */

Figure 87: Lost and found message

12.9 Condition
MSC conditions can be used in two different ways:

- as setting conditions;

- as guarding conditions.

Setting conditions define the actual system state of the instance(s) that share the condition. Guarding conditions are
used to restrict the possible ways in which an MSC can continue.

Local setting conditions can be used to indicate system states corresponding to states in SDL. The number of used local
conditions should be minimized in order to not obscure the primary function described by the MSC. Local guarding
conditions may contain a Boolean expression where variables are allowed. To make the description easy to understand,
(138)logical names should be used in MSC guarding conditions instead of variable expressions.

Conditions have no further meaning. They are not events and a global condition does not imply synchronization
between the shared instances.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 90

Global conditions are attached to all instances contained in an MSC and denote global system states. Conditions are
used in HMSCs to indicate global system states or guards and impose restrictions on the MSCs that are referenced in
the HMSC. Conditions also give extra context information for the basic MSC and makes the MSC specification model
easier to maintain. An example of an MSC with a global initial condition (guard) and a global final (setting) condition is
shown in figure 88.

msc RadioHandover_HL

Associated_to_old

ForceHandover

RadioHandover

Associated_to_new

msc

AP_ENV AP_RLC MT_RLC MT_ENV

Associated_to_new

opt

when Associated_to_old

RadioHandover

RLC_HANDOVER_REQUEST

RRC_radio_handover_cnf

RLC_RADIO_
_HANDOVER_COMPLETE

RRC_radio_handover_rsp

RRC_forward_handover_ind

RRC_forward_handover_req

RRC_handover_notify_ind

RLC_HANDOVER_NOTIFY

RRC_handover_notify_req

AP_ENV MT_ENV AP_RLC MT_RLC

Forced_Handover_Initiated

when Associated_to_old

msc ForceHandover

RLC_FORCE_
_HANDOVER_ACK

RRC_force_handover_cnf

RRC_force_handover_req

RRC_force_handover_ind

RRC_force_handover_rsp T_force_handover

RLC_FORCE_HANDOVER

Figure 88: Global guard and setting conditions used to restrict composition of scenario parts

12.10 Action
In some situations, it can be useful to indicate informally the action that is performed after a message is received
(see figure 75). This is possible by using an informal action. (139)Use of the MSC action symbol should be limited to
the informal expression of a specific aspect of behaviour, which helps to clarify the surrounding message sequence,
and to data assignments.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 91

12.11 Timer
Timers may be used informally to indicate delays or time constraints on event sequences. Since there is an explicit
notation in MSC for time constraints and measurements (see clause 12.13), this should be used instead of timers as the
notion of a timer entity may be too precise for most standard specifications.

DisplayUnit
Environment

UIControl KeyboardUnit
Environment

msc CheckBalance

DisplaySelectService

WaitForSelection

CheckBalance

DisplayPleaseWait

DisplayDelay

DisplayCurrentBalance

Figure 89: Timer usage

NOTE: The WaitForSelection timer is used to restrict the waiting time for a response signal. The DisplayDelay
timer is used as a delay in the execution.

In certain situations when using separated timer symbols, it is necessary to add an extra timer identifier in order to have
an unambiguous scenario.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 92

User_b User_a Network

1

1 alt

1

1

1 alt

1

msc 2Requests

WaitResp, a

WaitResp, a

ServiceReq

InfoNeeded

Info

WaitResp, a

WaitResp, b

WaitResp, b

WaitResp, b

Info

ServiceReq

InfoNeeded

Figure 90: Separated timer symbols and timer identifier

12.12 Control Flow
In specifying distributed systems, all communication is normally described by asynchronous messages. It is however
often the case that communication is by signal pairs, a call message and a corresponding reply message, together
making a synchronous communication.

A logically connected signal pair might be high-lighted in an MSC specification by using the special symbols for reply,
method and suspend.

The control flow concepts are:

- method call;

- reply symbol;

- method symbol;

- suspend symbol.

A method call is represented by a message symbol with the CALL keyword before the message name. For a method
call, there must always be a corresponding reply, and vice versa.

The method symbol is used to indicate that an instance is active. The suspension symbol is used to indicate that an
instance is suspended, typically waiting for the reply of a blocking method call. The normal instance axis means that the
instance is inactive, waiting for an activating event or a task to perform.

A method call followed by a suspension region is a synchronous method call.

If MSC Instances are used to represent entities that are not independent (asynchronously parallel), then the method and
suspend symbols can be used to indicate how each active object gets the flow of control from the CPU.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 93

Client_a
Client

Client_b
Client

Server Controller

msc UpdateAll

Call UpdateAll

Update

UpdateAck

Update

UpdateAck

UpdateAllReply

Suspend
symbol

Method
symbol

Figure 91: Specification of synchronous communication utilizing the suspend
symbol and the method symbol.

12.13 Time
The time concepts can be used for:

- time measurements;

- timing constraints on or between events.

Time constraints are useful for stating time requirements without adding behaviour to the model (compare with the use
of timers). Using the time concepts assumes that a data type for handling time expressions is available.

Destination_
Network

Originating_
Network CallingUser

Environment
CalledUser

Environment

msc Successful_Setup

CALL_PROCEEDING

[0.5*rel1, 2*rel1]

CONNECTED

ALERTING

SETUP (0,20] &rel1

CallRequest

CallRequestAck

IncomingCall

CallAlerting

CallAnswer

[10,60]

mscdocument AllScenarios

inst CallingUser;
inst OriginatingNetwork
 variables rel1 Time;
inst DestinationNetwork;
inst CalledUser;

language SDL;
data use Predefined;

Successful_Setup

Figure 92: Time constraints between events

NOTE 1: The time between sending the CallRequest message and receiving the CallRequestAck message should be
within the range 10 to 60 time units.

NOTE 2: The time it takes to send the SETUP message is measured and saved into the time variable rel1 and
should take no more than 20 time units.

NOTE 3: The relative time constraint [0,5 x rel1, 2 x rel1] requires that the time it takes to send the
CALL_PROCEEDING message should be at least 0,5 x rel1 and at most 2 x rel1.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 94

12.14 General ordering and coregion
Although an instance describes a total order of its events, an MSC normally describes only a set of partial event orders.
This is because instances are independent, since each MSC instance is asynchronously parallel. Synchronization
between instances is normally achieved by message passing.

A n M S C w ith th ree d iffe ren t p artia l
o rd ers:

a .o u t – a .in – b .o u t – b .in
a .o u t – b .o u t – a .in – b .in
a .o u t – b .o u t – b .in – a .in

A to ta lly o rd e red M S C
a .o u t – a .in – b .o u t – b .in – c .ou t – c .in

i1 i3 i2

m sc P artia lO rde rs

a

b

i3 i2 i1

m sc T o ta lO rde r

c

b

a

Figure 93: Event orders of MSCs

Coregions are useful for describing situations where two or several events might happen in an arbitrary order on one
instance. They are also commonly used on decomposed instances to relax the total ordering imposed to the contained
instances by the decomposed instance. However, large coregions, covering many events might be very hard to interpret.
Thus, (140)the number of events shown in an MSC coregion should be limited.

In figure 94, the four messages that are sent to the Server can be received in any order by the Server instance. However,
the first Info message must arrive after the second Info_Req is sent and the two Info_Req messages must be sent in a
specific order.

Server Client_a Client_b

msc Multiple_Info_Request

Info_Req

Info

Info

Info_Req

InfoEnd

InfoEnd

Figure 94: Use of coregion

General ordering can be used within a coregion to specify partial orders in an otherwise completely unordered region.
However, (141)an inline alternative expression should be used in an MSC instead of general ordering within a
coregion.

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 95

In the left diagram in figure 95, the order restrictions that existed in the example in figure 94 are released. On the other
hand, there are a number of unwanted event orders in this MSC. An InfoEnd message can for example be consumed
before its corresponding Info message.

In the right diagram in figure 95, each message triplet is now ordered, but the three events related to the communication
with Client_a are unordered with respect to the events related to the Client_b communication. (The Info_Req and Info
events on the Server are ordered by the imposed ordering at the Client instance.)

Client_b Server Client_a

msc Multiple_Requests

Info_Req
Info_Req

Info

Info
InfoEnd

InfoEnd

Client_b Server Client_a

msc Multiple_Requests

Info_Req
Info_Req

Info
Info

InfoEnd
InfoEnd

Figure 95: General ordering within a coregion reduces the number of orders

12.15 Relationship between MSC and UML Sequence Diagrams
Sequence diagrams in UML and MSC have many similar concepts and also have the same basic scope. For normal
message interchange between instances, Sequence diagrams provide the same expressiveness as MSCs. However,
Sequence diagrams in UML 1.4 lack concepts to relate scenarios to each other (operators and MSC references), and
should only be used for small, isolated scenario descriptions.

Controller

Server

UpdateAll

Client_a:Client

Update

UpdateAck

Client_b:Client

UpdateAllReply

Update

UpdateAck

Client_a
Client

Client_b
Client

Server Controller

msc UpdateAll

call UpdateAll

Update

UpdateAck

Update

UpdateAck

UpdateAllReply

Figure 96: UML sequence diagram and corresponding MSC

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 96

Annex A (informative):
Reserved words

A.1 SDL

A.1.1 Keywords
The following words are keywords in SDL and cannot be used as names.

NOTE: The list of keywords shows only the lower-case presentation. The upper-case equivalent of each is also an
SDL reserved word.

abstract active adding aggregation
alternative and any as
association atleast block break
call channel choice comment
composition connect connection constants
continue create dcl decision
default else endalternative endblock
endchannel endconnection enddecision endexceptionhandler
endinterface endmacro endmethod endobject
endoperator endpackage endprocedure endprocess
endselect endstate endsubstructure endsyntype
endsystem endtype endvalue env
exception exceptionhandler export exported
external fi finalized from
gate handle if import
in inherits input interface
join literals loop macro
macrodefinition macroid method methods
mod nameclass nextstate nodelay
none not now object
offspring onexception operator operators
optional or ordered out
output package parent priority
private procedure protected process
provided public raise redefined
referenced rem remote reset
return save select self
sender set signal signallist
signalset size spelling start
state stop struct substructure
synonym syntype system task
then this timer to
try type use value
via virtual with xor

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 97

A.1.2 Predefined words
The following words are defined in ITU-T Recommendation Z.100 [4] in the SDL package "Predefined" and should not
be redefined or used for any other purposes:

ACK Array Bag BEL
bit Bit bitstring Bitstring
Boolean BS CAN Character
Charstring chr CR DC1
DC2 DC3 DC4 del
DEL DivisionByZero DLE Duration
EM empty Empty emptystring
ENQ EOT ESC ETB
ETX Extract false FF
first fix float HT
incl Integer InvalidIndex InvalidReference
IS1 IS2 IS3 IS4
last length LF Make
mkstring Modify NAK Natural
NoMatchingAnswer NUL num Octet
octetstring Octetstring OutOfRange Pid
power Powerset Predefined Real
remove SI SO SOH
String STX SUB substring
SYN take Time true
UndefinedField UndefinedVariable Vector VT

A.2 MSC
The following words are keywords in MSC and cannot be used as names.

action after all alt
as before begin bottom
call comment concurrent condition
connect create data decomposed
def empty end endconcurrent
endexpr endinstance endmethod endmsc
endsuspension env equalpar escape
exc expr external finalized
found from gate in
inf inherits inline inst
instance int_boundary label language
loop lost method msc
mscdocument msg nestable nonnestable
offset opt otherwise out
par parenthesis receive redefined
reference related replyin replyout
seq shared starttimer stop
stoptimer suspension text time
timeout timer to top
undef using utilities variables
via virtual when wildcards

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 98

A.3 ASN.1
The following words are keywords in ASN.1 and cannot be used as names.

ABSENT ABSTRACT-SYNTAX ALL APPLICATION
AUTOMATIC BEGIN BIT BMPString
BOOLEAN BY CHARACTER CHOICE
CLASS COMPONENT COMPONENTS CONSTRAINED
DEFAULT DEFINITIONS EMBEDDED END
ENUMERATED EXCEPT EXPLICIT EXPORTS
EXTENSIBILITY EXTERNAL FALSE FROM
GeneralizedTime GeneralString GraphicString IA5String
IDENTIFIER IMPLICIT IMPLIED IMPORTS
INCLUDES INSTANCE INTEGER INTERSECTION
ISO646String MAX MIN MINUS-INFINITY
NULL NumericString OBJECT ObjectDescriptor
OCTET OF OPTIONAL PDV
PLUS-INFINITY PRESENT PrintableString PRIVATE
REAL SEQUENCE SET SIZE
STRING SYNTAX T61String TAGS
TeletexString TRUE TYPE-IDENTIFIER UNION
UNIQUE UNIVERSAL UniversalString UTCTime
UTF8String VideotexString VisibleString WITH

A.4 UML
The following words are cannot be used as names in UML.

«access» association «association» «become»
«call» complete «copy» «create»
«derive» derived «destroy» destroyed
«document» documentation «executable» «facade»
«file» «framework» «friend» Generalization
global «global» «implementation» «implementationClass»
implicit «import» incomplete «instantiate»
«invariant» «library» local «local»
«metaclass» «metamodel» new overlapping
parameter «parameter» persistence persistent
«postcondition» «powertype» «precondition» «process»
«realize» «refine» «requirement» «responsibility»
self «self» semantics «send»
«signalflow» «stub» «systemModel» «table»
«thread» «topLevel» «trace» transient
«type» «utility» xor

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 99

Annex B (informative):
Summary of guidelines
Table B.1 provides a summary of the guidelines for the use of SDL for descriptive purposes. This summary should be
read in conjunction with the main body of text in the present document.

Table B.1: Summary of guidelines

Identifier Guideline
NAMING CONVENTIONS

1 A naming convention that can be applied consistently to each notation used should be chosen
2 While it is acceptable to use the underscore character to delineate words within most SDL entity names,

it is advisable to avoid the use of the dash character in ASN.1 types and values in order to avoid conflicts
and misinterpretation in the associated SDL.

3 The general use of names which differ only in character case to distinguish between entities should be
avoided.

4 Care should be taken to ensure the consistent use of character case within names throughout an ASN.1,
SDL, MSC or UML specification

5 Names of less than 6 characters may be too cryptic and names of more than 30 characters may be too
difficult to read and assimilate.

6 The reserved words of all notations used within a standard should be avoided as defined names in each of
the individual parts

7 Readability is improved if the same convention for separating words within names is used throughout a
specification

8 In most cases an underscore character between each word removes any possibility of misinterpretation and
this is the approach that is recommended

9 In more complex models where each block is made up of a number of processes, the use of the same name
for a block and one of its constituent processes is likely to cause confusion and should be avoided.

10 The use of a single name for multiple purposes should be avoided wherever possible
11 The addition of project-specific prefixes or suffixes can make meaningful names appear cryptic and should be

used with great care
12 By giving blocks, processes and MSC instances names that represent the overall role that they play within

the system, it is possible to distinguish process names from procedure names. If carefully chosen, they can
help to link the SDL and MSC back to the corresponding clauses in the text description

13 The name chosen for an SDL operation should indicate the specific action taken by the operation
14 If possible, it is advisable to leave at least one significant word in the name unabbreviated as this can help to

provide the context for interpreting the remaining abbreviations
15 The name chosen for an interface or signal list should indicate the general function of the grouped signals
16 Where all signals between one block or process and another can be logically grouped together, signal list

names can be chosen to indicate the origin and the destination of the associated signals
17 A state name should clearly and concisely reflect the status of the process while in that state
18 If it is important to number states then this should be done in conjunction with meaningful names
19 The name chosen for a variable should indicate in general terms what it should be used for
20 Names used to identify constants can be more specific by indicating the actual value assigned to the constant
21 The names of SDL data types should be capitalized while the names of literals and synonyms should begin

with a lower-case character
PRESENTATION AND LAYOUT OF DIAGRAMS

22 The general flow of SDL behaviour diagrams and UML statechart and activity diagrams should be from the
top of the page towards the bottom

23 The flow on a page of an SDL process should end in a NEXTSTATE symbol rather than a connector
24 States that are entered from NEXTSTATE symbols on other pages should always be placed at the top of the

page.
25 Where transitions are short and simple they can be arranged side-by-side on a single page
26 When two or more transitions are shown on one page, there should be sufficient space between them to

make their separation clear to the reader
27 Connector symbols should generally only be used to provide a connection from the bottom of one page to the

top of another
28 All reference symbols and text boxes containing common declarations should be collected together at a

single point within the process diagrams.
29 Separate text box symbols should be used for each different type of declaration
30 Activity diagrams or statechart diagrams should use text boxes indicate what functions are specified in other

diagrams or in which diagram the behaviour continues

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 100

Identifier Guideline
31 When the text associated with a task symbol overflows its symbol boundaries, a text extension should be

used to carry the additional information
32 Symbols that terminate the processing on a particular page should be aligned horizontally
33 In simple systems where each process communicates with only one or two other processes, the orientation of

INPUT and OUTPUT symbols can be used to improve the readability of the SDL. However, to avoid possible
specification errors and misinterpretation, explicit methods of identifying the source and destination of signals
should be used

34 If used, the significance of the orientation of SDL symbols should be clearly explained in the text introducing
each process diagram

35 A state, input and the associated transition to the next state should be contained within a single SDL page
36 Process diagrams should segregate normal behaviour from exceptional behaviour.

USING PROCEDURES, OPERATIONS AND MACROS
37 The use of procedures to modularise specifications and to 'hide' detail is strongly recommended
38 Convert informal text descriptions of actions into procedure calls and replace the task symbols with a

procedure symbols
39 All data relevant to the real behaviour represented by a procedure should be specified in the parameter list

and returned value (if any).
40 In most cases it is preferable to use operations instead of value-returning procedures.
41 Procedures should only read and write to variables that are passed to the procedure in the parameter list or

are declared within the procedure itself
42 Procedures should specify a level of detail that is suitable for the particular purpose of the standard
43 A functional procedure should fulfil its specified role and do nothing that could be considered to be a side-

effect
44 The processing of signals is one of the most important activities shown in the SDL of a protocol standard and

should normally be visible in the calling process rather than the called procedure
45 It is important that procedures that specify a limited sequence of actions should be given names that reflect

as fully as possible the activity performed by a procedure
46 Behaviour that could be considered a side-effect to its defined purposes, should not be specified in a

procedure
47 In the exceptional case that a procedure includes the specification of one or more states, it is important to

ensure that all signals which are not directly processed within the procedure are correctly handled for
subsequent processing

48 The names of procedures having multiple effects should reflect each intended effect either individually or
collectively

49 The textual syntax of SDL can be used to define simple operations
50 Complex operations should be specified as operator or method diagrams which are referenced from the

relevant data type specification
51 The use of macros should be limited to those cases where the macro can be contained within one printed

page
USING DECISIONS

52 It is essential that the complete range of values of the data type contained in the decision is covered by
ranges of values in the answers without any overlap

53 Identifiers used in decisions should clearly reflect to a reader the 'question' and 'answer' nature of the
conditions being expressed.

54 The use of informal text in decision statements should be limited, preferably to those cases where the
decision is obviously binary in nature

55 In most cases, enumerated types rather than text strings should be used to express decisions.
56 ELSE should be used as a decision outcome value to distinguish between one or more specific outcomes

and all other possibilities
57 ASN.1 constraint or SDL SYNTYPE constructs should be used to limit the range of values represented by an

ELSE branch in a decision
58 SDL SYNONYMs should be used to define meaningful alternatives to the Boolean values of true and false if

this aids clarity
59 Procedure calls should be used in conjunction with decisions to eliminate the use of informal text
60 The ANY expression should not appear in the SDL specifications in standards except where it is included to

show the behaviour of an entity (such as a user) that is not the subject of the standard
61 Where mutually exclusive implementation options are to be expressed, the option symbol should be used

rather than a decision
62 SDL algorithmic flow control expressions should be restricted to situations where the required behaviour

involves only the processing of data but not the sending of signals and not the control of timers.
SYSTEM STRUCTURE, COMMUNICATION AND ADDRESSING

63 The SDL version of the architecture of a protocol or service should be consistent with and complementary to
other (non-SDL) descriptive diagrams

64 Comments should be used to convey to the reader the relationship of the SDL architecture to the relevant
non-SDL parts of the standard

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 101

Identifier Guideline
65 The SDL specification within a standard should comprise one system composed of at least one agent
66 SDL should be used to show the structure of a system as well as its behaviour
67 SDL sub-structuring should be used to simplify complex SDL models but should not be used excessively.
68 Multiple instances of SDL blocks and processes should be avoided if possible
69 Informative blocks or processes that are not needed to aid understanding should be omitted
70 If the same block or process is required at more than one place within an SDL specification, a BLOCK TYPE

or PROCESS TYPE should be defined from which instances can be derived.
71 Wherever possible, a minimal number of static instances should be used instead of dynamically created SDL

processes.
72 A specification area diagram (if used) should include the most important packages shown as reference

symbols with dependency shown on the diagram.
73 All normative channels (interfaces) should be clearly marked as being normative (using a comments box)
74 There should be no more than one communication path specified in each direction between one entity and

another.
75 Remote procedures, import/export, or shared data should not be used to exchange information between

blocks and processes
76 A small number of interface names (preferably one) should be used to identify the signals on a particular

channel or gate
77 All channels and gates should be shown with the associated interface names, signal list names or signals.
78 TO or VIA should be used in an output symbol to indicate the recipient clearly if this is not obvious from the

structure of the SDL system
79 A different signal (with a self descriptive name) should be defined for each distinct message event.
80 The source of the signal in an input should be indicated either by its name or by a comment
81 There should be only one signal in each output symbol.
82 All the gates of an agent should be explicitly connected to channels.
83 Gates should not be attached to block symbols or process symbols.
84 Process definitions contained within process definitions should be avoided, unless the intention is to exclude

concurrent interpretation of processes
85 The use of shared data should be avoided.
86 A composite state should
87 Use a STATE TYPE diagram rather than a STATE diagram.
88 A standard should be defined so that the language-defined exceptions (such as OutOfRange) do not occur.

SPECIFICATION AND USE OF DATA
89 ASN.1 should be used to specify data and the ASN.1 data definitions should be made common to both the

SDL specification and the non-SDL parts of a standard
90 SDL signals should be used to represent normative messages with ASN.1 describing the parameters carried

by the messages.
91 The top-level parameters of messages should be contained in a single structured type (e.g., ASN.1

SEQUENCE or SET) rather than specified as a list of simple types
92 For readability the same symbol (exclamation mark or full stop) should be used for all field selections in one

specification.
93 If the parameters in a message have to appear in a fixed order, then the ASN.1 constructor SEQUENCE

should be used to specify the message contents
94 If the parameters of a message may appear in any order, then the ASN.1 constructor SET should be used to

specify the message contents.
95 When mapping messages described in another format (such as tables) to a simplified form as ASN.1 or SDL

data types, the structure of the simplified messages should be kept as close as possible to the structure of
the original messages and the names of messages and their associated parameters should be preserved.

96 When there are data type specific operations for internal data, it is usually better to use SDL to define the
data type rather than ASN.1 so that the operations can be defined as part of the data type.

97 For readability, in one SDL specification the same brackets (square - which are distinct from other uses, or
round) should be used for all ARRAY, VECTOR and STRING indexing.

98 Whenever possible symbolic names should be used rather than explicit value denotations (such as 123,
'0110'B).

99 ASN.1 ENUMERATED or SDL literal list types should be used for data that consists of a collection of names
100 VALUE TYPE should be used to define a new data type in a specification while SYNTYPE should by used to

rename or constrain the values of existing data types
101 OBJECT TYPE should be avoided as the data type for signal parameters
102 OBJECT TYPE definitions(or a data type name prefixed by OBJECT) should be used only when the data

cannot be simply expressed with a VALUE TYPE.
103 Any data type to define variables should be avoided

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 102

Identifier Guideline
USING MESSAGE SEQUENCE CHARTS (MSC)

104 When MSC is used in combination with SDL, a message input in MSC should correspond to a signal
consumption in SDL.

105 Each MSC diagram should be limited to the information that fits into one printed page
106 When used in a standard, an MSC diagram should always be surrounded by a diagram frame and have an

attached name.
107 A clear spacing between symbols in an MSC diagram should be maintained both horizontally and vertically
108 An instance axis should always be terminated at the end by either an instance end symbol or a stop.
109 Annotations help to improve the understanding of an MSC description and should be used freely.
110 Names in an MSC should be the same as the names of corresponding entities in the SDL
111 Entity names should be unique within a specification.
112 If there is an associated SDL specification, each MSC instance should have a kind name and kind

denominator corresponding to the name and entity kind of the equivalent entity in SDL
113 The number of instances included in an MSC should be kept low to maintain a focus on the normative

interface(s) and important entities in the logical or physical model
114 If the kind name is present in an MSC instance, the instance head symbol should contain the instance name

with the kind name placed above the symbol
115 Instance decomposition should be avoided in MSCs because of the complexity it might introduce
116 Dynamic instances should be avoided in MSCs.
117 Instances with instance kind name "environment" should be used to represent the environment in an MSC.
118 HMSCs should be used to specify a high-level view of scenarios which are defined in other MSC or HMSC

diagrams.
119 Connections should always be used when HMSC flow lines join or merge to distinguish them from simple

crossing lines.
120 Annotations should be used within HMSC to explain the purpose of different alternative branches
121 References to other HMSCs should be used within HMSCs to ensure that a logical structuring of described

behaviour is achieved.
122 Graphical HMSC expressions should be used in preference to textual Reference expressions
123 Plain MSCs should not include HMSC References
124 If the same scenario appears in several MSCs, it should be specified as an MSC of its own and referenced

from other MSCs.
125 Each message involved in an MSC (?that is referenced from a basic MSC?) should have both its output and

input described within the diagram
126 When it is not feasible to use MSC References to describe different sequence structures, inline expressions

should be used.
127 The use of multiple inline expressions in a single MSC diagram should be limited to avoid an unnecessary

explosion in the number of implicit scenarios
128 Each message involved in an inline expression should have both its output and input described within the

inline expression
129 HMSCs should be used to highlight significant alternative or optional behaviour paths but; if the differences

are only minor, these could be described within an MSC using inline expressions
130 Data types and expressions introduce complexity to a specification and it is therefore preferable to omit them

from MSC diagrams. As an alternative, annotations may be added to describe the data if more detail is
needed. Data should be described formally in MSC only when greater formality than can be achieved by
using annotations is required.

131 The crossing of MSC instances by messages should be minimised by placing frequently communicating
instances close to each other wherever possible

132 Delay or the passage of time should be described by the time concepts in MSC
133 The unnecessary crossing of messages should be avoided since it obscures the meaning of an MSC
134 An MSC should show an outgoing event below the incoming event that preceded it
135 Only those parameters that are absolutely necessary for the understanding of the message sequence should

be included with an MSC message
136 If incomplete message parameter information is to be shown in an MSC, this should be given in a note,

following the message name
137 Lost and found message should normally not be used in MSCs
138 Logical names should be used in MSC guarding conditions instead of variable expressions
139 Use of the MSC action symbol should be limited to the informal expression of a specific aspect of behaviour,

which helps to clarify the surrounding message sequence, and to data assignments.
140 The number of events shown in an MSC coregion should be limited.
141 An inline alternative expression should be used in an MSC instead of general ordering within a coregion

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 103

Annex C (informative):
Bibliography
ITU-T Recommendation Z.109: "SDL combined with UML".

ETSI

ETSI EG 202 106 V2.1.1 (2003-11) 104

History

Document history

V1.1.1 October 1999 Publication

V2.0.0 July 2002 Membership Approval Procedure MV 20020906: 2002-07-09 to 2002-09-06

V2.1.1 November 2003 Publication

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction
	5 Using specification languages in protocol standards
	5.1 Introduction
	5.2 Layered protocols
	5.3 Developing a protocol specification
	5.3.1 Specifying requirements
	5.3.2 Developing a logical model
	5.3.3 Developing a physical model

	6 Naming conventions
	6.1 General
	6.1.1 Case sensitivity
	6.1.2 Length of names
	6.1.3 Reserved words

	6.2 SDL and MSC
	6.2.1 Use of non-significant characters
	6.2.2 Multiple use of names
	6.2.3 Making names meaningful
	6.2.3.1 Block, process and instance names
	6.2.3.2 Procedure, operator and method names
	6.2.3.3 Signal names
	6.2.3.4 Signal list and interface names
	6.2.3.5 SDL state names
	6.2.3.6 Names of variables and constants
	6.2.3.7 Timers

	6.3 Data types

	7 Presentation and layout of diagrams
	7.1 The general flow of behaviour across a page
	7.2 Behaviour covering more than one page
	7.2.1 SDL behaviour diagrams
	7.2.2 Definitions in behaviour diagrams
	7.2.3 UML activity diagrams

	7.3 Text extension symbols
	7.4 Alignment and orientation of symbols
	7.4.1 Alignment
	7.4.2 Orientation

	7.5 Structuring behaviour descriptions
	7.5.1 Basic structuring principles
	7.5.2 Structuring using procedures and operations
	7.5.3 Emphasizing the difference between normal and exceptional behaviour flows

	8 Using procedures, operations and macros
	8.1 Procedures
	8.1.1 Using procedures to replace informal tasks
	8.1.2 Procedure signature (parameters and returned values)
	8.1.3 Procedure body
	8.1.4 Avoiding side-effects
	8.1.5 Naming of procedures

	8.2 Operations
	8.3 Using macros

	9 Using decisions
	9.1 Decisions
	9.1.1 Naming of identifiers used with decisions
	9.1.2 Using decisions to structure a specification
	9.1.3 Use of text strings in decisions
	9.1.4 Use of enumerated types in decisions
	9.1.4.1 Use of ELSE

	9.1.5 Using SYNTYPES to limit the range of values in decisions
	9.1.6 Use of symbolic names in decision outcomes
	9.1.7 Use of range expressions in decisions
	9.1.8 Use of Procedures in Decisions
	9.1.9 Use of ANY in decisions

	9.2 Use of options rather than decisions
	9.3 Flow control statements

	10 System structure, communication and addressing
	10.1 System structure
	10.2 Minimising the SDL model
	10.3 Avoiding repetition by using SDL types
	10.3.1 Defining the same behaviour at both ends of a protocol
	10.3.2 Static instances to represent repeated functionality

	10.4 Interfaces
	10.5 Diagrams showing relationships
	10.5.1 Use of associations between class symbols
	10.5.1.1 Use of a class symbol for an INTERFACE definition

	10.6 Structure diagrams using interfaces between agents
	10.7 Communication and Addressing
	10.7.1 Use of interface and SIGNALLIST definitions
	10.7.2 Indicating the use of signals in inputs and outputs
	10.7.3 Directing messages to the right process
	10.7.4 Differentiating messages
	10.7.5 Multiple outputs
	10.7.6 Transitions triggered by a set of signals

	10.8 Gates and implicit channels
	10.9 Other structuring mechanisms
	10.9.1 Processes within a process
	10.9.2 Shared data
	10.9.3 Hiding and re-using parts of a state
	10.9.4 Using packages
	10.9.5 Exception handling

	11 Specification and use of data
	11.1 Specifying messages
	11.1.1 Structuring messages
	11.1.2 Ordering message parameters
	11.1.3 Transposing other message formats

	11.2 Specifying data that is internal to the SDL model
	11.2.1 Use of symbolic names
	11.2.1.1 Using data TYPE and SYNTYPE
	11.2.1.1.1 Using OBJECT TYPE

	12 Using Message Sequence Charts (MSC)
	12.1 Introduction
	12.2 Relationship between MSC and SDL
	12.3 Presentation and layout
	12.3.1 Annotations

	12.4 Naming and scope
	12.5 MSC document
	12.6 Structuring
	12.6.1 Architecture
	12.6.1.1 Instance
	12.6.1.2 Instance decomposition
	12.6.1.3 Dynamic instances
	12.6.1.4 Environment

	12.6.2 Behaviour
	12.6.2.1 High-level MSC (HMSC)
	12.6.2.2 MSC reference in basic MSC
	12.6.2.3 Inline expression

	12.7 Data
	12.8 Message
	12.8.1 Incomplete messages

	12.9 Condition
	12.10 Action
	12.11 Timer
	12.12 Control Flow
	12.13 Time
	12.14 General ordering and coregion
	12.15 Relationship between MSC and UML Sequence Diagrams

	Annex A (informative): Reserved words
	A.1 SDL
	A.1.1 Keywords
	A.1.2 Predefined words

	A.2 MSC
	A.3 ASN.1
	A.4 UML

	Annex B (informative): Summary of guidelines
	Annex C (informative): Bibliography
	History

